# Copyright 2023 Observational Health Data Sciences and Informatics
#
# This file is part of Legend-T2DM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Perform random-effects meta-analysis on CES results on data server
#'
#' @details
#' This function executes a meta-analysis across data source results.
#'
#' @param connectionDetails DatabaseConnector details to public LEGEND-T2DM db server
#' @param resultsDatabaseSchema Schema on the postgres server where the tables have been created.
#' @param maExportFolder A local folder where the meta-anlysis results will be written.
#' @param diagnosticsFilter Table of which target-comparator-outcome-analysis-database tuples pass diagnostics;
#' can be NULL
#' @param maxCores How many parallel cores should be used? If more cores are made available
#' this can speed up the analyses.
#' @param cacheFileName Use (if exists) or cache database results in file
#'
#' @export
doMetaAnalysis <- function(connectionDetails,
indicationId = "class",
resultsDatabaseSchema,
maExportFolder,
maName = "Meta-analysis",
diagnosticsFilter = NULL,
maxCores,
cacheFileName = NULL) {
if (!is.null(diagnosticsFilter)) {
if (!(all(c("targetId", "comparatorId", "outcomeId", "analysisId",
"databaseId", "pass") %in% names(diagnosticsFilter)))) {
stop("Improperly formatted diagnostics filter")
}
}
if (!file.exists(maExportFolder)) {
dir.create(maExportFolder, recursive = TRUE)
}
ParallelLogger::addDefaultFileLogger(file.path(maExportFolder, "metaAnalysisLog.txt"))
ParallelLogger::logInfo("Performing meta-analysis for main effects")
doMaEffectType(connectionDetails = connectionDetails,
resultsDatabaseSchema = resultsDatabaseSchema,
maExportFolder = maExportFolder,
maName = maName,
diagnosticsFilter = diagnosticsFilter,
maxCores = maxCores,
cacheFileName = cacheFileName)
ParallelLogger::logInfo("Creating database and results_data_time tables")
database <- data.frame(database_id = maName,
database_name = "Random-effects meta-analysis",
description = "Random-effects meta-analysis using the DerSimonian-Laird estimator.",
is_meta_analysis = 1)
fileName <- file.path(maExportFolder, "database.csv")
write.csv(database, fileName, row.names = FALSE)
dateTime <- data.frame(
indicationId = c(indicationId),
databaseId = c(maName),
dateTime = c(Sys.time()),
packageVersion = packageVersion("LegendT2dm"))
colnames(dateTime) <- SqlRender::camelCaseToSnakeCase(colnames(dateTime))
fileName <- file.path(maExportFolder, "results_date_time.csv")
write.csv(dateTime, fileName, row.names = FALSE)
ParallelLogger::logInfo("Adding results to zip file")
zipName <- paste0("Results_", indicationId, "_study_", maName, ".zip")
files <- c("cohort_method_result.csv", "database.csv", "results_date_time.csv")
oldWd <- setwd(maExportFolder)
DatabaseConnector::createZipFile(zipFile = zipName, files = files)
setwd(oldWd)
ParallelLogger::logInfo("Results are ready for sharing at: ",
file.path(maExportFolder, zipName))
}
loadMainResults <- function(connectionDetails,
resultsDatabaseSchema,
cacheFileName) {
if (!is.null(cacheFileName) && file.exists(cacheFileName)) {
ParallelLogger::logInfo("Loading cached main results from ", cacheFileName)
cohortMethodResult <- readRDS(cacheFileName)
} else {
ParallelLogger::logInfo("Loading main results from database for meta-analysis")
connection <- DatabaseConnector::connect(connectionDetails)
sql <- paste0("SET search_path TO ", resultsDatabaseSchema, ";")
DatabaseConnector::executeSql(connection = connection, sql = sql)
sql <- "SELECT * FROM cohort_method_result;"
cohortMethodResult <- DatabaseConnector::querySql(connection, sql)
colnames(cohortMethodResult) <- SqlRender::snakeCaseToCamelCase(colnames(cohortMethodResult))
sql <- "SELECT DISTINCT outcome_id FROM negative_control_outcome;"
ncs <- DatabaseConnector::querySql(connection, sql)
colnames(ncs) <- SqlRender::snakeCaseToCamelCase(colnames(ncs))
DatabaseConnector::disconnect(connection)
cohortMethodResult$trueEffectSize <- NA
idx <- cohortMethodResult$outcomeId %in% ncs$outcomeId
cohortMethodResult$trueEffectSize[idx] <- 1
if (!is.null(cacheFileName)) {
ParallelLogger::logInfo("Caching main results into ", cacheFileName)
saveRDS(cohortMethodResult, file = cacheFileName)
}
}
return(cohortMethodResult)
}
doMaEffectType <- function(connectionDetails,
resultsDatabaseSchema,
maExportFolder,
maName,
maxCores,
diagnosticsFilter,
cacheFileName) {
allResults <- loadMainResults(connectionDetails, resultsDatabaseSchema,
cacheFileName)
ncIds <- allResults %>% filter(trueEffectSize == 1) %>% pull(outcomeId) %>% unique()
if (!is.null(diagnosticsFilter)) {
diagnosticsFilter <- diagnosticsFilter %>%
filter(pass) %>%
select("targetId", "comparatorId", "analysisId", "databaseId", "outcomeId")
ncDiagnostics <- diagnosticsFilter %>%
distinct(targetId, comparatorId, analysisId, databaseId) %>%
merge(data.frame(outcomeId = ncIds))
blind <- rbind(diagnosticsFilter, ncDiagnostics)
allResults <- allResults %>%
inner_join(blind, by = c("targetId",
"comparatorId",
"analysisId",
"outcomeId",
"databaseId"))
}
allResults$type[allResults$outcomeId %in% ncIds] <- "Negative control"
allResults$type[is.na(allResults$type)] <- "Outcome of interest"
groups <- split(allResults, paste(allResults$targetId, allResults$comparatorId, allResults$analysisId), drop = TRUE)
cluster <- ParallelLogger::makeCluster(min(maxCores, 12))
results <- ParallelLogger::clusterApply(cluster,
groups,
computeGroupMetaAnalysis,
shinyDataFolder = NULL,
allControls = NULL)
ParallelLogger::stopCluster(cluster)
results <- do.call(rbind, results)
results <- results %>% mutate(databaseId = maName) %>%
select(-trueEffectSize,-type)
colnames(results) <- SqlRender::camelCaseToSnakeCase(colnames(results))
fileName <- file.path(maExportFolder, "cohort_method_result.csv")
write.csv(results, fileName, row.names = FALSE, na = "")
}
computeGroupMetaAnalysis <- function(group,
shinyDataFolder,
allControls) {
analysisId <- group$analysisId[1]
targetId <- group$targetId[1]
comparatorId <- group$comparatorId[1]
ParallelLogger::logInfo("Performing meta-analysis for target ", targetId, ", comparator ", comparatorId, ", analysis ", analysisId)
outcomeGroups <- split(group, group$outcomeId, drop = TRUE)
outcomeGroupResults <- lapply(outcomeGroups, computeSingleMetaAnalysis)
groupResults <- do.call(rbind, outcomeGroupResults)
ncs <- groupResults[groupResults$type == "Negative control", ]
ncs <- ncs[!is.na(ncs$seLogRr), ]
if (nrow(ncs) > 5) {
null <- EmpiricalCalibration::fitMcmcNull(ncs$logRr, ncs$seLogRr) # calibrate CIs without synthesizing positive controls, assumes error consistent across effect sizes
model <- EmpiricalCalibration::convertNullToErrorModel(null)
calibratedP <- EmpiricalCalibration::calibrateP(null = null,
logRr = groupResults$logRr,
seLogRr = groupResults$seLogRr)
calibratedCi <- EmpiricalCalibration::calibrateConfidenceInterval(logRr = groupResults$logRr,
seLogRr = groupResults$seLogRr,
model = model)
groupResults$calibratedP <- calibratedP$p
groupResults$calibratedRr <- exp(calibratedCi$logRr)
groupResults$calibratedCi95Lb <- exp(calibratedCi$logLb95Rr)
groupResults$calibratedCi95Ub <- exp(calibratedCi$logUb95Rr)
groupResults$calibratedLogRr <- calibratedCi$logRr
groupResults$calibratedSeLogRr <- calibratedCi$seLogRr
} else {
groupResults$calibratedP <- rep(NA, nrow(groupResults))
groupResults$calibratedRr <- rep(NA, nrow(groupResults))
groupResults$calibratedCi95Lb <- rep(NA, nrow(groupResults))
groupResults$calibratedCi95Ub <- rep(NA, nrow(groupResults))
groupResults$calibratedLogRr <- rep(NA, nrow(groupResults))
groupResults$calibratedSeLogRr <- rep(NA, nrow(groupResults))
}
return(groupResults)
}
computeSingleMetaAnalysis <- function(outcomeGroup) {
maRow <- outcomeGroup[1, ]
outcomeGroup <- outcomeGroup[!is.na(outcomeGroup$seLogRr), ] # drops rows with zero events in T or C
if (nrow(outcomeGroup) == 0) {
maRow$targetSubjects <- 0
maRow$comparatorSubjects <- 0
maRow$targetDays <- 0
maRow$comparatorDays <- 0
maRow$targetOutcomes <- 0
maRow$comparatorOutcomes <- 0
maRow$rr <- NA
maRow$ci95Lb <- NA
maRow$ci95Ub <- NA
maRow$p <- NA
maRow$logRr <- NA
maRow$seLogRr <- NA
maRow$i2 <- NA
} else if (nrow(outcomeGroup) == 1) {
maRow <- outcomeGroup[1, ]
maRow$i2 <- 0
} else {
maRow$targetSubjects <- sumMinCellCount(outcomeGroup$targetSubjects)
maRow$comparatorSubjects <- sumMinCellCount(outcomeGroup$comparatorSubjects)
maRow$targetDays <- sum(outcomeGroup$targetDays)
maRow$comparatorDays <- sum(outcomeGroup$comparatorDays)
maRow$targetOutcomes <- sumMinCellCount(outcomeGroup$targetOutcomes)
maRow$comparatorOutcomes <- sumMinCellCount(outcomeGroup$comparatorOutcomes)
meta <- meta::metagen(outcomeGroup$logRr, outcomeGroup$seLogRr, sm = "RR", hakn = FALSE)
s <- summary(meta)
maRow$i2 <- s$I2$TE
rnd <- s$random
maRow$rr <- exp(rnd$TE)
maRow$ci95Lb <- exp(rnd$lower)
maRow$ci95Ub <- exp(rnd$upper)
maRow$p <- rnd$p
maRow$logRr <- rnd$TE
maRow$seLogRr <- rnd$seTE
}
if (is.na(maRow$logRr)) {
maRow$mdrr <- NA
} else {
alpha <- 0.05
power <- 0.8
z1MinAlpha <- qnorm(1 - alpha/2)
zBeta <- -qnorm(1 - power)
pA <- maRow$targetSubjects / (maRow$targetSubjects + maRow$comparatorSubjects)
pB <- 1 - pA
totalEvents <- abs(maRow$targetOutcomes) + abs(maRow$comparatorOutcomes)
maRow$mdrr <- exp(sqrt((zBeta + z1MinAlpha)^2/(totalEvents * pA * pB)))
}
maRow$databaseId <- "Meta-analysis"
maRow$sources <- paste(outcomeGroup$databaseId[order(outcomeGroup$databaseId)],
collapse = ";")
return(maRow)
}
sumMinCellCount <- function(counts) {
total <- sum(abs(counts))
if (any(counts < 0)) {
total <- -total
}
return(total)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.