# taken from the dca package @ http://www.danieldsjoberg.com/dca/articles/survival-outcomes.html
stdca <- function (data, outcome, ttoutcome, timepoint, predictors, xstart = 0.01,
xstop = 0.99, xby = 0.01, ymin = -0.05, probability = NULL,
harm = NULL, graph = TRUE, intervention = FALSE, interventionper = 100,
smooth = FALSE, loess.span = 0.1, cmprsk = FALSE)
{
data = data[stats::complete.cases(data[c(outcome, ttoutcome,
predictors)]), c(outcome, ttoutcome, predictors)]
if ((length(data[!(data[outcome] == 0 | data[outcome] ==
1), outcome]) > 0) & cmprsk == FALSE) {
stop("outcome must be coded as 0 and 1")
}
if (class(data) != "data.frame") {
stop("Input data must be class data.frame")
}
if (xstart < 0 | xstart > 1) {
stop("xstart must lie between 0 and 1")
}
if (xstop < 0 | xstop > 1) {
stop("xstop must lie between 0 and 1")
}
if (xby <= 0 | xby >= 1) {
stop("xby must lie between 0 and 1")
}
if (xstart >= xstop) {
stop("xstop must be larger than xstart")
}
pred.n = length(predictors)
if (length(probability) > 0 & pred.n != length(probability)) {
stop("Number of probabilities specified must be the same as the number of predictors being checked.")
}
if (length(harm) > 0 & pred.n != length(harm)) {
stop("Number of harms specified must be the same as the number of predictors being checked.")
}
if (length(harm) == 0) {
harm = rep(0, pred.n)
}
if (length(probability) == 0) {
probability = rep(TRUE, pred.n)
}
if (length(predictors[predictors == "all" | predictors ==
"none"])) {
stop("Prediction names cannot be equal to all or none.")
}
for (m in 1:pred.n) {
if (probability[m] != TRUE & probability[m] != FALSE) {
stop("Each element of probability vector must be TRUE or FALSE")
}
if (probability[m] == TRUE & (max(data[predictors[m]]) >
1 | min(data[predictors[m]]) < 0)) {
stop(paste(predictors[m], "must be between 0 and 1 OR sepcified as a non-probability in the probability option",
sep = " "))
}
if (probability[m] == FALSE) {
model = NULL
pred = NULL
model = survival::coxph(survival::Surv(data.matrix(data[ttoutcome]),
data.matrix(data[outcome])) ~ data.matrix(data[predictors[m]]))
surv.data = data.frame(0)
pred = data.frame(1 - c(summary(survival::survfit(model,
newdata = surv.data), time = timepoint)$surv))
names(pred) = predictors[m]
data = cbind(data[names(data) != predictors[m]],
pred)
print(paste(predictors[m], "converted to a probability with Cox regression. Due to linearity and proportional hazards assumption, miscalibration may occur.",
sep = " "))
}
}
N = dim(data)[1]
if (cmprsk == FALSE) {
km.cuminc = survival::survfit(survival::Surv(data.matrix(data[ttoutcome]), #fixed missing survival::
data.matrix(data[outcome])) ~ 1)
pd = 1 - summary(km.cuminc, times = timepoint)$surv
}
else {
cr.cuminc = cmprsk::cuminc(data[[ttoutcome]], data[[outcome]])
pd = cmprsk::timepoints(cr.cuminc, times = timepoint)$est[1]
}
nb = data.frame(seq(from = xstart, to = xstop, by = xby))
names(nb) = "threshold"
interv = nb
error = NULL
nb["all"] = pd - (1 - pd) * nb$threshold/(1 - nb$threshold)
nb["none"] = 0
for (m in 1:pred.n) {
nb[predictors[m]] = NA
for (t in 1:length(nb$threshold)) {
px = sum(data[predictors[m]] > nb$threshold[t])/N
if (px == 0) {
error = rbind(error, paste(predictors[m], ": No observations with risk greater than ",
nb$threshold[t] * 100, "%", sep = ""))
break
}
else {
if (cmprsk == FALSE) {
km.cuminc = survival::survfit(survival::Surv(data.matrix(data[data[predictors[m]] >
nb$threshold[t], ttoutcome]), data.matrix(data[data[predictors[m]] >
nb$threshold[t], outcome])) ~ 1)
pdgivenx = (1 - summary(km.cuminc, times = timepoint)$surv)
if (length(pdgivenx) == 0) {
error = rbind(error, paste(predictors[m],
": No observations with risk greater than ",
nb$threshold[t] * 100, "% that have followup through the timepoint selected",
sep = ""))
break
}
}
else {
cr.cuminc = cmprsk::cuminc(data[[ttoutcome]][data[[predictors[m]]] >
nb$threshold[t]], data[[outcome]][data[[predictors[m]]] >
nb$threshold[t]])
pdgivenx = cmprsk::timepoints(cr.cuminc, times = timepoint)$est[1]
if (is.na(pdgivenx)) {
error = rbind(error, paste(predictors[m],
": No observations with risk greater than ",
nb$threshold[t] * 100, "% that have followup through the timepoint selected",
sep = ""))
break
}
}
nb[t, predictors[m]] = pdgivenx * px - (1 - pdgivenx) *
px * nb$threshold[t]/(1 - nb$threshold[t]) -
harm[m]
}
}
interv[predictors[m]] = (nb[predictors[m]] - nb["all"]) *
interventionper/(interv$threshold/(1 - interv$threshold))
}
if (length(error) > 0) {
print(paste(error, ", and therefore net benefit not calculable in this range.",
sep = ""))
}
for (m in 1:pred.n) {
if (smooth == TRUE) {
lws = stats::loess(data.matrix(nb[!is.na(nb[[predictors[m]]]),
predictors[m]]) ~ data.matrix(nb[!is.na(nb[[predictors[m]]]),
"threshold"]), span = loess.span)
nb[!is.na(nb[[predictors[m]]]), paste(predictors[m],
"_sm", sep = "")] = lws$fitted
lws = stats::loess(data.matrix(interv[!is.na(nb[[predictors[m]]]),
predictors[m]]) ~ data.matrix(interv[!is.na(nb[[predictors[m]]]),
"threshold"]), span = loess.span)
interv[!is.na(nb[[predictors[m]]]), paste(predictors[m],
"_sm", sep = "")] = lws$fitted
}
}
if (graph == TRUE) {
if (intervention == TRUE) {
legendlabel <- NULL
legendcolor <- NULL
legendwidth <- NULL
legendpattern <- NULL
ymax = max(interv[predictors], na.rm = TRUE)
plot(x = nb$threshold, y = nb$all, type = "n",
xlim = c(xstart, xstop), ylim = c(ymin, ymax),
xlab = "Threshold probability", ylab = paste("Net reduction in interventions per",
interventionper, "patients"))
for (m in 1:pred.n) {
if (smooth == TRUE) {
lines(interv$threshold, data.matrix(interv[paste(predictors[m],
"_sm", sep = "")]), col = m,
lty = 2)
}
else {
lines(interv$threshold, data.matrix(interv[predictors[m]]),
col = m, lty = 2)
}
legendlabel <- c(legendlabel, predictors[m])
legendcolor <- c(legendcolor, m)
legendwidth <- c(legendwidth, 1)
legendpattern <- c(legendpattern, 2)
}
}
else {
legendlabel <- c("None", "All")
legendcolor <- c(17, 8)
legendwidth <- c(2, 2)
legendpattern <- c(1, 1)
ymax = max(nb[names(nb) != "threshold"], na.rm = TRUE)
graphics::plot(x = nb$threshold, y = nb$all, type = "l",
col = 8, lwd = 2, xlim = c(xstart, xstop), ylim = c(ymin,
ymax), xlab = "Threshold probability",
ylab = "Net benefit")
graphics::lines(x = nb$threshold, y = nb$none, lwd = 2)
for (m in 1:pred.n) {
if (smooth == TRUE) {
lines(nb$threshold, data.matrix(nb[paste(predictors[m],
"_sm", sep = "")]), col = m,
lty = 2)
}
else {
lines(nb$threshold, data.matrix(nb[predictors[m]]),
col = m, lty = 2)
}
legendlabel <- c(legendlabel, predictors[m])
legendcolor <- c(legendcolor, m)
legendwidth <- c(legendwidth, 1)
legendpattern <- c(legendpattern, 2)
}
}
graphics::legend("topright", legendlabel, cex = 0.8,
col = legendcolor, lwd = legendwidth, lty = legendpattern)
}
results = list()
results$N = N
results$predictors = data.frame(cbind(predictors, harm, probability))
names(results$predictors) = c("predictor", "harm.applied",
"probability")
results$interventions.avoided.per = interventionper
results$net.benefit = nb
results$interventions.avoided = interv
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.