# Load Required Packages
for (lib in c("dplyr", "pbapply", "MASS", "lme4", "lmerTest", "car", "cplm", "nlme", "pscl", "parallel")) {
if (!suppressPackageStartupMessages(require(lib, character.only = TRUE))) stop(paste("Please install the R package: ", lib))
}
# fit the data using the model selected and applying the correction
fit.data <- function(features, metadata, model, formula = NULL, random_effects_formula = NULL, correction = "BH", cores = 1) {
# set the formula default to all fixed effects if not provided
if (is.null(formula)) formula <- as.formula(paste("expr ~ ", paste(colnames(metadata), collapse = "+")))
#############################################################
# Determine the function and summary for the model selected #
#############################################################
if (model == "LM") {
if (is.null(random_effects_formula)) {
model_function <- function(formula, data, na.action) {
return(glm(formula, data = data, family = "gaussian", na.action = na.action))
}
summary_function <- function(fit) {
lm_summary <- summary(fit)$coefficients
para <- as.data.frame(lm_summary)[-1, -3]
para$name <- rownames(lm_summary)[-1]
return(para)
}
} else {
formula <- paste(". ~", paste(all.vars(formula)[-1], collapse = " + "), ".", sep = " + ")
formula <- update(random_effects_formula, formula)
model_function <- function(formula, data, na.action) {
return(lmerTest::lmer(formula, data = data, na.action = na.action))
}
summary_function <- function(fit) {
lm_summary <- coef(summary(fit))
para <- as.data.frame(lm_summary)[-1, -c(3:4)]
para$name <- rownames(lm_summary)[-1]
return(para)
}
}
}
if (model == "SLM") {
# simple "lm" linear model
if (is.null(random_effects_formula)) {
model_function <- function(formula, data, na.action) {
return(lm(formula, data = data, family = "gaussian", na.action = na.action))
}
summary_function <- function(fit) {
lm_summary <- summary(fit)$coefficients
r2 <- summary(fit)$r.squared
para <- as.data.frame(lm_summary)[-1, -3]
para$name <- rownames(lm_summary)[-1]
para$r2 <- r2
return(para)
}
} else { # need to be tested
formula <- paste(". ~", paste(all.vars(formula)[-1], collapse = " + "), ".", sep = " + ")
formula <- update(random_effects_formula, formula)
model_function <- function(formula, data, na.action) {
return(lmerTest::lmer(formula, data = data, na.action = na.action))
}
summary_function <- function(fit) {
lm_summary <- coef(summary(fit))
para <- as.data.frame(lm_summary)[-1, -c(3:4)]
para$name <- rownames(lm_summary)[-1]
para$r2 <- r.squaredGLMM(fit)
return(para)
}
}
}
if (model == "CPLM") {
model_function <- cplm::cpglm
summary_function <- function(fit) {
cplm_out <- capture.output(cplm_summary <- cplm::summary(fit)$coefficients)
para <- as.data.frame(cplm_summary)[-1, -3]
para$name <- rownames(cplm_summary)[-1]
logging::logdebug("Summary output\n%s", paste(cplm_out, collapse = "\n"))
return(para)
}
}
if (model == "NEGBIN") {
model_function <- MASS::glm.nb
summary_function <- function(fit) {
glm_summary <- summary(fit)$coefficients
para <- as.data.frame(glm_summary)[-1, -3]
para$name <- rownames(glm_summary)[-1]
return(para)
}
}
if (model == "ZICP") {
model_function <- cplm::zcpglm
summary_function <- function(fit) {
zicp_out <- capture.output(zicp_summary <- cplm::summary(fit)$coefficients$tweedie)
para <- as.data.frame(zicp_summary)[-1, -3]
para$name <- rownames(zicp_summary)[-1]
logging::logdebug("Summary output\n%s", paste(zicp_out, collapse = "\n"))
return(para)
}
}
if (model == "ZINB") {
model_function <- pscl::zeroinfl
summary_function <- function(fit) {
pscl_summary <- summary(fit)$coefficients$count
para <- as.data.frame(pscl_summary)[-c(1, (ncol(metadata) + 2)), -3]
para$name <- rownames(pscl_summary)[c(2:11)]
return(para)
}
}
#######################################
# Init cluster for parallel computing #
#######################################
cluster <- NULL
if (cores > 1) {
logging::loginfo("Creating cluster of %s R processes", cores)
cluster <- parallel::makeCluster(cores)
}
##############################
# Apply per-feature modeling #
##############################
outputs <- pbapply::pblapply(1:ncol(features), cl = cluster, function(x) {
# Extract Features One by One
featuresVector <- features[, x]
# Fit Model
logging::loginfo("Fitting model to feature number %d, %s", x, colnames(features)[x])
dat_sub <- data.frame(expr = as.numeric(featuresVector), metadata)
fit <- tryCatch(
{
fit1 <- model_function(formula, data = dat_sub, na.action = na.exclude)
},
error = function(err) {
fit1 <- try({
model_function(formula, data = dat_sub, na.action = na.exclude)
})
return(fit1)
}
)
# Gather Output
output <- list()
if (all(class(fit) != "try-error")) {
output$para <- summary_function(fit)
output$residuals <- residuals(fit)
} else {
logging::logwarn(paste("Fitting problem for feature", x, "returning NA"))
output$para <- as.data.frame(matrix(NA, nrow = ncol(metadata), ncol = 3))
output$para$name <- colnames(metadata)
output$residuals <- NA
}
if (model == "SLM") {
colnames(output$para) <- c("coef", "stderr", "pval", "name", "r2")
} else {
colnames(output$para) <- c("coef", "stderr", "pval", "name")
}
output$para$feature <- colnames(features)[x]
return(output)
})
# stop the cluster
if (!is.null(cluster)) parallel::stopCluster(cluster)
# bind the results for each feature
paras <- do.call(rbind, lapply(outputs, function(x) {
return(x$para)
}))
residuals <- do.call(rbind, lapply(outputs, function(x) {
return(x$residuals)
}))
row.names(residuals) <- colnames(features)
################################
# Apply correction to p-values #
################################
paras$qval <- as.numeric(p.adjust(paras$pval, method = correction))
#####################################################
# Determine the metadata names from the model names #
#####################################################
metadata_names <- colnames(metadata)
# order the metadata names by decreasing length
metadata_names_ordered <- metadata_names[order(nchar(metadata_names), decreasing = TRUE)]
# find the metadata name based on the match to the beginning of the string
extract_metadata_name <- function(name) {
return(metadata_names_ordered[mapply(startsWith, name, metadata_names_ordered)][1])
}
paras$metadata <- unlist(lapply(paras$name, extract_metadata_name))
# compute the value as the model contrast minus metadata
paras$value <- mapply(function(x, y) {
if (x == y) x else gsub(x, "", y)
}, paras$metadata, paras$name)
##############################
# Sort by decreasing q-value #
##############################
paras <- paras[order(paras$qval, decreasing = FALSE), ]
paras <- dplyr::select(paras, c("feature", "metadata", "value"), dplyr::everything())
return(list("results" = paras, "residuals" = residuals))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.