#' @title module_gv
#'
#' @description Summarises genetic variations, calculates mutational load and
#' predicts mutational signatures in samples of interest.
#'
#' @param muts Data frame containing genetic variations. Necessary columns must
#' have the following names:
#' - Hugo_Symbol: Gene symbol from HGNC.
#' - Chromosome: Affected chromosome.
#' - Start_Position: Mutation start coordinate.
#' - End_Position: Mutation end coordinate.
#' - Reference_Allele: The plus strand reference allele at this position.
#' Includes the deleted sequence for a deletion or "-" for an insertion.
#' - Tumor_Seq_Allele2: Tumor sequencing discovery allele.
#' - Variant_Classification: Translational effect of variant allele. Can be one
#' of the following: Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del,
#' In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Silent, Splice_Site,
#' Translation_Start_Site, Nonstop_Mutation, RNA, Targeted_Region.
#' - Variant_Type: Type of mutation. Can be: 'SNP' (Single nucleotide polymorphism),
#' 'DNP' (Double nucleotide polymorphism), 'INS' (Insertion), 'DEL' (Deletion).
#' - Tumor_Sample_Barcode: Sample name.
#' @param metadata Data frame that contains supporting variables to the data.
#' @param response Unquoted name of the variable indicating the groups to analyse.
#' @param top_genes Number of genes to be analysed in the mutational summary.
#' @param specific_genes Genes that will be plotted in the oncoplot.
#' @param colors Character vector indicating the colors of the different groups
#' to compare. Default values are two: black and orange.
#' @param compare A character string indicating which method to be used for
#' comparing means. Options are 't.test' and 'wilcox.test' for two groups or
#' 'anova' and 'kruskal.test' for more groups. Default value is NULL.
#' @param p_label Character string specifying label type. Allowed values include
#' 'p.signif' (shows the significance levels), 'p.format' (shows the formatted
#' p-value).
#' @param gbuild Version of the genome to work with. It can be one of the following:
#' - ‘BSgenome.Hsapiens.UCSC.hg19’
#' - ‘BSgenome.Hsapiens.UCSC.hg38’
#' - ‘BSgenome.Mmusculus.UCSC.mm10’
#' - ‘BSgenome.Mmusculus.UCSC.mm39’
#' @param mut_sigs Mutational signature matrices containing the frequencies of
#' all nucleotide changes per signature need to be indicated. GEGVIC contains the
#' matrices from COSMIC for single and double base substitutions. To choose one,
#' the user has to indicate ’COSMIC_v{XX}_{YY}BS_GRCh{ZZ}’ in the mut_sigs argument.
#' The XX is the version, that can be v2 or v3.2. YY indicates if mutations are
#' single (S) or double (D) base substitutions, while the ZZ is for the genome
#' assembly, either GRCh37 or GRCh38 for human data and mm9 or mm10 for mouse data.
#' @param tri.counts.method Normalization method. Needs to be set to either:
#' - 'default' – no further normalization
#' - 'exome' – normalized by number of times each trinucleotide context is
#' observed in the exome
#' - 'genome' – normalized by number of times each trinucleotide context is
#' observed in the genome
#' - 'exome2genome' – multiplied by a ratio of that trinucleotide's occurence in
#' the genome to the trinucleotide's occurence in the exome
#' - 'genome2exome' – multiplied by a ratio of that trinucleotide's occurence in
#' the exome to the trinucleotide's occurence in the genome
#' - data frame containing user defined scaling factor – count data for each
#' trinucleotide context is multiplied by the corresponding value given in the
#' data frame.
#' @param col.names Logical value to determine if tumour names s are shown in the
#' heatmap.
#'
#' @return Returns plot and ggplot objects to summarise sample mutations, mutational
#' load and mutational signatures. Also it returns a list of data frames with
#' the data necessary to generate the plots.
#'
#' @export
#'
#' @importFrom maftools read.maf
#' @importFrom maftools plotmafSummary
#' @importFrom maftools oncoplot
#' @import rlang
#' @import dplyr
#' @import ggplot2
#' @import ggpubr
#' @import tibble
#' @import tidyr
#' @import deconstructSigs
#' @import pheatmap
#' @import ggplotify
#'
#' @examples
#' tables_module_gv <- module_gv(muts = sample_mutations,
#' metadata = sample_metadata,
#' response = MSI_status,
#' top_genes = 10,
#' specific_genes = NULL,
#' colors = c('orange' ,'black'),
#' compare = 'wilcox.test',
#' p_label = 'p.format',
#' gbuild = 'BSgenome.Hsapiens.UCSC.hg38',
#' mut_sigs = 'COSMIC_v2_SBS_GRCh38',
#' tri.counts.method = 'default',
#' col.names = TRUE)
#'
module_gv <- function(muts,
metadata,
response,
top_genes = 10,
specific_genes = NULL,
colors = c('orange' ,'black'),
compare = NULL,
p_label = 'p.format',
gbuild = 'BSgenome.Hsapiens.UCSC.hg19',
mut_sigs = 'COSMIC_v2_SBS_GRCh37',
tri.counts.method = 'default',
col.names = TRUE) {
response <- rlang::enquo(response)
#resp <- rlang::as_label(response)
# Show genetic variations summary
gv_mut_summary(muts = muts,
metadata = metadata,
response = !!response,
top_genes = top_genes,
specific_genes = specific_genes,
col.names = col.names,
colors = colors)
# Calculate mutational load
mut.load <- gv_mut_load(muts = muts,
metadata = metadata,
response = !!response,
compare = compare,
p_label = p_label,
colors = colors)
# Extract mutational signature profiles
## the gv_mut_signatures function do not work as a nested function
# Load genomic build
library(gbuild, character.only = TRUE)
# Check the type of mutations to use
## Get the name of the mutational signatures files chosen by the user
eval.mut.input <- substitute(mut_sigs)
# If the name of the mutational singatures contains SBS
if (grepl('SBS', eval.mut.input, ignore.case = TRUE) == TRUE) {
# Filter mutations of SNP type
mut.filt <- muts %>%
dplyr::filter(Variant_Type == 'SNP')
# Define sig.type as SBS
sig_type <- 'SBS'
} else if (grepl('DBS', eval.mut.input, ignore.case = TRUE) == TRUE) {
# Filter mutations of DNP type
mut.filt <- muts %>%
dplyr::filter(Variant_Type == 'DNP')
# Define sig.type as DBS
sig_type <- 'DBS'
} else {
# Filter mutations of INS or DEL type
mut.filt <- muts %>%
dplyr::filter(Variant_Type %in% c('INS', 'DEL'))
# Define sig.type as SBS
sig_type <- 'ID'
}
# Create deconstructSigs inputs ----------------------------------------
sigs.input <- deconstructSigs::mut.to.sigs.input(
mut.ref = mut.filt,
sample.id = 'Tumor_Sample_Barcode',
chr = 'Chromosome',
pos = 'Start_Position',
ref = 'Reference_Allele',
alt = 'Tumor_Seq_Allele2',
bsg = get(noquote(gbuild)),
sig.type = sig_type)
# generate ids for all samples -----------------------------------------
ids_samples <- unique(muts$Tumor_Sample_Barcode)
# get mutational signature predictions for all samples -----------------
results <- sapply(ids_samples,
function(x) {
deconstructSigs::whichSignatures(
tumor.ref = sigs.input,
signatures.ref = as.data.frame(get(noquote(mut_sigs))),
sample.id = x,
contexts.needed = TRUE,
tri.counts.method = tri.counts.method)
})
# Analyze results ------------------------------------------------------
# Extract results from whichSignatures function
results.extr <- GEGVIC::gv_extr_mut_sig(results = results,
ids_samples = ids_samples) %>%
# Join predicted mutational signature results with metadata
dplyr::left_join(x = .,
y = metadata,
by = c('Samples')) %>%
# Round predicted mutational signature contribution
dplyr::mutate(Value = round(x = Value, digits = 2))
# Filter top 4 signatures for barplot
top.results.extr <- results.extr %>%
dplyr::group_by(Samples) %>%
dplyr::top_n(n = 4, wt = Value) %>%
droplevels()
# Plot results ---------------------------------------------------------
## Barplot ------------------------------------------------------------
bar.plot <- ggplot(top.results.extr, aes(x = Samples,
y = Value,
fill = as.factor(Signature))) +
# Geometric objects
geom_bar(stat = 'identity') +
# Define fill colors using the Set1 palette from ggpubr package
scale_fill_manual(values = ggpubr::get_palette(palette = 'simpsons',
k = length(unique(
top.results.extr$Signature
)))) +
# Expand columns to fill margins
scale_y_continuous(expand = c(0,0)) +
# Title and labs
ggtitle('Top 4 Mutational signature predictions per sample') +
labs(fill = 'Signatures') +
# Themes
theme_bw() +
theme(
plot.title = element_text(size = 15, hjust = 0.5, face = 'bold'),
#axis.text.x.bottom = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 8, angle = 45, hjust = 1, face = 'bold'),
strip.background = element_rect(
color="black", fill="black", size=1.5, linetype="solid"),
strip.text = element_text(color = 'white')
) +
# Faceting
facet_wrap(facets = vars(!!response),
scales = 'free_x')
## Eliminate sample names if the user decides so
if(col.names == FALSE){
bar.plot <- bar.plot + theme(axis.text.x = element_blank())
}
## Heatmap ------------------------------------------------------------
# Format signature predictions object in a wide format: Pivot wider
wide.results.extr <- results.extr %>%
dplyr::select(Samples, Signature, Value) %>%
tidyr::pivot_wider(id_cols = Signature,
names_from = Samples,
values_from = Value) %>%
tibble::column_to_rownames('Signature')
# Format the response variable from metadata
pheat.meta <- metadata %>%
dplyr::select(Samples, !!response) %>%
dplyr::arrange(!!response) %>%
tibble::column_to_rownames('Samples')
# Define response level group colors in a list
temp_color <- colors
resp.levels <- metadata %>%
dplyr::select(!!response) %>%
dplyr::pull(!!response)
names(temp_color) <- unique(resp.levels)
# Get the quoted name of the response variable
quoted.resp <- metadata %>%
dplyr::select(!!response) %>%
colnames(.)
pheat.anno.color <- list(temp_color)
# Name the list
names(pheat.anno.color) <- quoted.resp
# Plot pheatmap
heat.map <- pheatmap(as.matrix(wide.results.extr[,
order(match(colnames(wide.results.extr),
rownames(pheat.meta)))]),
color = ggpubr::get_palette(palette = 'Purples', k = 10),
scale = 'none',
show_colnames = col.names,
cluster_rows = FALSE,
cluster_cols = FALSE,
annotation_col = pheat.meta,
annotation_colors = pheat.anno.color,
main = 'Mutational signature predictions per sample',
silent = TRUE)
# Print plots --------------------------------------------
print(bar.plot)
print(ggplotify::as.ggplot(heat.map))
# Return mutational load and mutational signatures data -----------
tables_module_gv <- list(mut.load = mut.load,
mut.sigs = results.extr)
return(tables_module_gv)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.