BS | R Documentation |
The function BS()
defines The Birnbaum-Saunders,
a two parameter distribution, for a gamlss.family
object
to be used in GAMLSS fitting
using the function gamlss()
.
BS(mu.link = "log", sigma.link = "log")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
The Birnbaum-Saunders with parameters mu
and sigma
has density given by
f(x) = \frac{x^{-3/2}(x+\mu)}{2\sigma\sqrt{2\pi\mu}} \exp\left(\frac{-1}{2\sigma^2}(\frac{x}{\mu}+\frac{\mu}{x}-2)\right)
for x>0
, \mu>0
and \sigma>0
. In this
parameterization \mu
is the median of X
,
E(X)=\mu(1+\sigma^2/2)
and
Var(X)=(\mu\sigma)^2(1+5\sigma^2/4)
. The functions
proposed here
corresponds to the functions created by Roquim et al. (2021)
with minor modifications to obtain correct log-likelihoods
and random samples.
Returns a gamlss.family object which can be used to fit a
BS distribution in the gamlss()
function.
Roquim, F. V., Ramires, T. G., Nakamura, L. R., Righetto, A. J., Lima, R. R., & Gomes, R. A. (2021). Building flexible regression models: including the Birnbaum-Saunders distribution in the gamlss package. Semina: Ciências Exatas e Tecnológicas, 42(2), 163-168.
BS.
# Example 1
# Generating some random values with
# known mu and sigma
y <- rBS(n=100, mu=0.75, sigma=1.3)
# Fitting the model
require(gamlss)
mod1 <- gamlss(y~1, sigma.fo=~1, family=BS)
# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod1, what="mu"))
exp(coef(mod1, what="sigma"))
# Example 2
# Generating random values for a regression model
# A function to simulate a data set with Y ~ BS
gendat <- function(n) {
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(1.45 - 3 * x1)
sigma <- exp(2 - 1.5 * x2)
y <- rBS(n=n, mu=mu, sigma=sigma)
data.frame(y=y, x1=x1, x2=x2)
}
set.seed(123)
dat <- gendat(n=300)
mod2 <- gamlss(y~x1, sigma.fo=~x2,
family=BS, data=dat)
summary(mod2)
# Example 3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.