dIW | R Documentation |
Density, distribution function, quantile function,
random generation and hazard function for the inverse weibull distribution with
parameters mu
and sigma
.
dIW(x, mu, sigma, log = FALSE)
pIW(q, mu, sigma, lower.tail = TRUE, log.p = FALSE)
qIW(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)
rIW(n, mu, sigma)
hIW(x, mu, sigma)
x , q |
vector of quantiles. |
mu |
scale parameter. |
sigma |
shape parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
The inverse weibull distribution with parameters mu
and
sigma
has density given by
f(x) = \mu \sigma x^{-\sigma-1} \exp(-\mu x^{-\sigma})
for x > 0
, \mu > 0
and \sigma > 0
dIW
gives the density, pIW
gives the distribution
function, qIW
gives the quantile function, rIW
generates random deviates and hIW
gives the hazard function.
Freddy Hernandez, fhernanb@unal.edu.co
almalki2014modificationsRelDists
\insertRefdrapella1993complementaryRelDists
# The probability density function
curve(dIW(x, mu=1, sigma=2), from=0, to=10,
col="red", las=1, ylab="f(x)")
# The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pIW(x, mu=1, sigma=2),
from=0, to=10, col="red", las=1, ylab="F(x)")
curve(pIW(x, mu=1, sigma=2, lower.tail=FALSE),
from=0, to=10, col="red", las=1, ylab="R(x)")
# The quantile function
p <- seq(from=0, to=0.99, length.out=100)
plot(x=qIW(p, mu=1, sigma=2), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pIW(x, mu=1, sigma=2), from=0, add=TRUE, col="red")
# The random function
hist(rIW(n=1000, mu=1, sigma=2), freq=FALSE, xlim=c(0, 40),
xlab="x", las=1, main="")
curve(dIW(x, mu=1, sigma=2), from=0, add=TRUE, col="red")
# The Hazard function
par(mfrow=c(1, 1))
curve(hIW(x, mu=1, sigma=2), from=0, to=15,
col="red", ylab="Hazard function", las=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.