dLIN | R Documentation |
Density, distribution function, quantile function,
random generation and hazard function for the Lindley distribution
with parameter mu
.
dLIN(x, mu, log = FALSE)
pLIN(q, mu, lower.tail = TRUE, log.p = FALSE)
qLIN(p, mu, lower.tail = TRUE, log.p = FALSE)
rLIN(n, mu)
hLIN(x, mu, log = FALSE)
x , q |
vector of quantiles. |
mu |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Lindley Distribution with parameter mu
has density given by
f(x) = \frac{\mu^2}{\mu+1} (1+x) \exp(-\mu x),
for x > 0 and \mu > 0
. These function were taken form LindleyR package.
dLIN
gives the density, pLIN
gives the distribution
function, qLIN
gives the quantile function, rLIN
generates random deviates and hLIN
gives the hazard function.
Freddy Hernandez, fhernanb@unal.edu.co
lindley1958fiducialRelDists
\insertReflindley1965introductionRelDists
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dLIN(x, mu=1.5), from=0.0001, to=10,
col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pLIN(x, mu=2), from=0.0001, to=10, col="red", las=1, ylab="F(x)")
curve(pLIN(x, mu=2, lower.tail=FALSE), from=0.0001,
to=10, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qLIN(p, mu=2), y=p, xlab="Quantile", las=1, ylab="Probability")
curve(pLIN(x, mu=2), from=0, add=TRUE, col="red")
## The random function
hist(rLIN(n=10000, mu=2), freq=FALSE, xlab="x", las=1, main="")
curve(dLIN(x, mu=2), from=0.09, to=5, add=TRUE, col="red")
## The Hazard function
curve(hLIN(x, mu=2), from=0.001, to=10, col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.