dExWALD | R Documentation |
These functions define the density, distribution function, quantile
function and random generation for the Ex-Wald distribution
with parameter \mu
, \sigma
and \nu
.
dExWALD(x, mu = 1.5, sigma = 1.5, nu = 2, log = FALSE)
pExWALD(q, mu = 1.5, sigma = 1.5, nu = 2, lower.tail = TRUE, log.p = FALSE)
qExWALD(p, mu = 1.5, sigma = 1.5, nu = 2)
rExWALD(n, mu = 1.5, sigma = 1.5, nu = 2)
x , q |
vector of (non-negative integer) quantiles. |
mu |
vector of the mu parameter. |
sigma |
vector of the sigma parameter. |
nu |
vector of the nu parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of random values to return. |
The Wald distribution with parameters \mu
, \sigma
and \nu
has density given by
f(x |\mu, \sigma, \nu) = \frac{1}{\nu} \exp(\frac{-x}{\nu} + \sigma(\mu-k)) F_W(x|k, \sigma) \, \text{for} \, k \geq 0
f(x |\mu, \sigma, \nu) = \frac{1}{\nu} \exp\left( \frac{-(\sigma-\mu)^2}{2x} \right) Re \left( w(k^\prime \sqrt{x/2} + \frac{\sigma i}{\sqrt{2x}}) \right) \, \text{for} \, k < 0
where k=\sqrt{\mu^2-\frac{2}{\nu}}
,
k^\prime=\sqrt{\frac{2}{\nu}-\mu^2}
and
F_W
corresponds to the cumulative function of
the Wald distribution.
More details about those expressions can be found on page 680 from Heathcote (2004).
dExWALD
gives the density, pExWALD
gives the distribution
function, qExWALD
gives the quantile function, rExWALD
generates random deviates.
Freddy Hernandez, fhernanb@unal.edu.co
Schwarz, W. (2001). The ex-Wald distribution as a descriptive model of response times. Behavior Research Methods, Instruments, & Computers, 33, 457-469.
Heathcote, A. (2004). Fitting Wald and ex-Wald distributions to response time data: An example using functions for the S-PLUS package. Behavior Research Methods, Instruments, & Computers, 36, 678-694.
ExWALD
# Example 1
# Plotting the mass function for different parameter values
curve(dExWALD(x, mu=0.15, sigma=52.5, nu=50), ylim=c(0, 0.005),
from=0, to=1200, col="cadetblue3", las=1, ylab="f(x)")
curve(dExWALD(x, mu=0.20, sigma=70, nu=50),
add=TRUE, col= "purple")
curve(dExWALD(x, mu=0.25, sigma=87.5, nu=50),
add=TRUE, col="goldenrod")
curve(dExWALD(x, mu=0.20, sigma=70, nu=115),
add=TRUE, col="tomato")
curve(dExWALD(x, mu=0.20, sigma=70, nu=35),
add=TRUE, col="blue")
legend("topright", col=c("cadetblue3", "purple", "goldenrod",
"tomato", "blue"),
lty=1, bty="n",
legend=c("mu=0.15, sigma=52.5, nu=50",
"mu=0.20, sigma=70.0, nu=50",
"mu=0.25, sigma=87.5, nu=50",
"mu=0.20, sigma=70.0, nu=115",
"mu=0.20, sigma=70.0, nu=35"))
# Example 2
# Checking if the cumulative curves converge to 1
curve(pExWALD(x, mu=0.15, sigma=52.5, nu=50), ylim=c(0, 1),
from=0, to=1200, col="cadetblue3", las=1, ylab="F(x)")
curve(pExWALD(x, mu=0.20, sigma=70, nu=50),
add=TRUE, col= "purple")
curve(pExWALD(x, mu=0.25, sigma=87.5, nu=50),
add=TRUE, col="goldenrod")
curve(pExWALD(x, mu=0.20, sigma=70, nu=115),
add=TRUE, col="tomato")
curve(pExWALD(x, mu=0.20, sigma=70, nu=35),
add=TRUE, col="blue")
legend("bottomright", col=c("cadetblue3", "purple", "goldenrod",
"tomato", "blue"),
lty=1, bty="n",
legend=c("mu=0.15, sigma=52.5, nu=50",
"mu=0.20, sigma=70.0, nu=50",
"mu=0.25, sigma=87.5, nu=50",
"mu=0.20, sigma=70.0, nu=115",
"mu=0.20, sigma=70.0, nu=35"))
# Example 3
# Checking the quantile function
mu <- 5
sigma <- 3
nu <- 2
p <- seq(from=0.1, to=0.99, length.out=100)
plot(x=qExWALD(p, mu=mu, sigma=sigma, nu=nu), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pExWALD(x, mu=mu, sigma=sigma, nu=nu), from=0, add=TRUE, col="red")
# Example 4
# Comparing the random generator output with
# the theoretical probabilities
mu <- 0.2
sigma <- 70
nu <- 35
x <- rExWALD(n=10000, mu=mu, sigma=sigma, nu=nu)
hist(x, freq=FALSE)
curve(dExWALD(x, mu=mu, sigma=sigma, nu=nu), col="tomato", add=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.