dCJ2 | R Documentation |
Density, distribution function, quantile function,
random generation and hazard function for the two-parameter
Chris-Jerry distribution with
parameters mu
and sigma
.
dCJ2(x, mu, sigma, log = FALSE)
pCJ2(q, mu, sigma, log.p = FALSE, lower.tail = TRUE)
qCJ2(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)
rCJ2(n, mu, sigma)
hCJ2(x, mu, sigma, log = FALSE)
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
The two-parameter Chris-Jerry distribution with parameters mu
and sigma
has density given by
f(x; \sigma, \mu) = \frac{\mu^2}{\sigma \mu + 2} (\sigma + \mu x^2) e^{-\mu x}; \quad x > 0, \quad \mu > 0, \quad \sigma > 0
Note: In this implementation we changed the original parameters
\theta
for \mu
and \lambda
for \sigma
,
we did it to implement this distribution within gamlss framework.
dCJ2
gives the density, pCJ2
gives the distribution
function, qCJ2
gives the quantile function, rCJ2
generates random deviates and hCJ2
gives the hazard function.
Manuel Gutierrez Tangarife, mgutierrezta@unal.edu.co
Chinedu, Eberechukwu Q., et al. "New lifetime distribution with applications to single acceptance sampling plan and scenarios of increasing hazard rates" Symmetry 15.10 (2023): 188.
CJ2
# Example 1
# Plotting the density function for different parameter values
curve(dCJ2(x, mu=3.5, sigma=0.01),
from=0.0001, to=5,
ylim=c(0, 1),
col="red", lwd=2,
main="Density function",
xlab="x", ylab="f(x)")
curve(dCJ2(x, mu=2, sigma=0.05),
col="green",
lwd=2,
add=TRUE)
curve(dCJ2(x, mu=1.5, sigma=0.01),
col="blue",
lwd=2,
add=TRUE)
curve(dCJ2(x, mu=2.5, sigma=0.01),
col="lightblue",
lwd=2,
add=TRUE)
legend("topright", legend=c("mu=3.5, sigma=0.01",
"mu=2, sigma=0.05",
"mu=1.5, sigma=0.01",
"mu=2.5, sigma=0.1"),
col=c( "red", "green","blue","lightblue"), lwd=2, cex=0.6)
# Example 2
# Checking if the cumulative curves converge to 1
curve(pCJ2(x, mu=2.7, sigma=0.1),
from=0.0001, to=5,
ylim=c(0, 1),
col="red", lwd=2,
main="Cumulative function",
xlab="x", ylab="f(x)")
curve(pCJ2(x, mu=2.3, sigma=0.5),
col="green",
lwd=2,
add=TRUE)
curve(pCJ2(x, mu=2.8, sigma=0.2),
col="blue",
lwd=2,
add=TRUE)
curve(pCJ2(x, mu=3.8, sigma=0.3),
col="lightblue",
lwd=2,
add=TRUE)
legend("bottomright", legend=c("mu=2.75, sigma=0.1",
"mu=2.3, sigma=0.5",
"mu=2.8, sigma=0.2",
"mu=3.8, sigma=0.3"),
col=c( "red", "green","blue","lightblue"), lwd=2, cex=0.6)
# Example 3
# Checking the quantile function
p <- seq(from=0.0001, to=0.99999, length.out=100)
plot(x=qCJ2(p, mu=2.3, sigma=1.7), y=p, xlab="Quantile",
las=1, ylab="Probability", main="Quantile function ")
curve(pCJ2(x, mu=2.3, sigma=1.7),
from=0.0001, add=TRUE, col="red", lwd=2.5)
# Example 4
# Comparing the random generator output with
# the theoretical probabilities
x <- rCJ2(n=10000, mu=1.5, sigma=2.5)
hist(x, freq=FALSE)
curve(dCJ2(x, mu=1.5, sigma=2.5), from=0.001, to=8,
add=TRUE, col="tomato", lwd=2)
# Example 5
# The Hazard function
curve(hCJ2(x, mu=0.85, sigma=0.15),
from=0.0001, to=5,
ylim=c(0, 1),
col="red", lwd=2,
main="Hazard function",
xlab="x", ylab="f(x)")
curve(hCJ2(x, mu=1, sigma=0.05),
col="green",
lwd=2,
add=TRUE)
curve(hCJ2(x, mu=0.9, sigma=0.1),
col="blue",
lwd=2,
add=TRUE)
curve(hCJ2(x, mu=1.15, sigma=0.1),
col="lightblue",
lwd=2,
add=TRUE)
legend("bottomright", legend=c("mu=0.85, sigma=0.15",
"mu=1, sigma=0.05",
"mu=0.9, sigma=0.1",
"mu=1.15, sigma=0.1"),
col=c( "red", "green","blue","lightblue"), lwd=2, cex=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.