dNEE | R Documentation |
Density, distribution function, quantile function,
random generation and hazard function for the two-parameter
New Exponentiated Exponential with
parameters mu
and sigma
.
dNEE(x, mu = 1, sigma = 1, log = FALSE)
pNEE(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNEE(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNEE(n = 1, mu = 1, sigma = 1)
hNEE(x, mu, sigma, log = FALSE)
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. |
The New Exponentiated Exponential distribution with parameters mu
and sigma
has density given by
f(x | \mu, \sigma) = \log(2^\sigma) \mu \exp(-\mu x) (1-\exp(-\mu x))^{\sigma-1} 2^{(1-\exp(-\mu x))^\sigma},
for x>0
, \mu>0
and \sigma>0
.
Note: In this implementation we changed the original parameters
\theta
for \mu
and \alpha
for \sigma
,
we did it to implement this distribution within gamlss framework.
dNEE
gives the density, pNEE
gives the distribution
function, qNEE
gives the quantile function, rNEE
generates random deviates and hNEE
gives the hazard function.
Juliana Garcia, juliana.garciav@udea.edu.co
Hassan, Anwar, I. H. Dar, and M. A. Lone. "A New Class of Probability Distributions With An Application to Engineering Data." Pakistan Journal of Statistics and Operation Research 20.2 (2024): 217-231.
NEE
# Example 1
# Plotting the mass function for different parameter values
curve(dNEE(x, mu=0.2, sigma=0.3),
from=0, to=8, col="cadetblue3", las=1, ylab="f(x)")
curve(dNEE(x, mu=1, sigma=4),
add=TRUE, col= "purple")
curve(dNEE(x, mu=1.5, sigma=22),
add=TRUE, col="goldenrod")
curve(dNEE(x, mu=0.5, sigma=2),
add=TRUE, col="green3")
legend("topright", col=c("cadetblue3", "purple", "goldenrod", "green3"), lty=1, bty="n",
legend=c("mu=0.2, sigma=0.3",
"mu=1.0, sigma=4",
"mu=1.5, sigma=22",
"mu=0.5, sigma=2"))
# Example 2
# Checking if the cumulative curves converge to 1
curve(pNEE(x, mu=0.2, sigma=0.3), ylim=c(0, 1),
from=0, to=8, col="cadetblue3", las=1, ylab="F(x)")
curve(pNEE(x, mu=1, sigma=4),
add=TRUE, col= "purple")
curve(pNEE(x, mu=1.5, sigma=22),
add=TRUE, col="goldenrod")
curve(pNEE(x, mu=0.5, sigma=2),
add=TRUE, col="green3")
legend("bottomright", col=c("cadetblue3", "purple", "goldenrod", "green3"), lty=1, bty="n",
legend=c("mu=0.2, sigma=0.3",
"mu=1.0, sigma=4",
"mu=1.5, sigma=22",
"mu=0.5, sigma=2"))
# Example 3
# Checking the quantile function
mu <- 0.5
sigma <- 2
p <- seq(from=0, to=0.999, length.out=100)
plot(x=qNEE(p, mu=mu, sigma=sigma), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pNEE(x, mu=mu, sigma=sigma), from=0, add=TRUE, col="red")
# Example 4
# Comparing the random generator output with
# the theoretical probabilities
mu <- 0.5
sigma <- 2
x <- rNEE(n=10000, mu=mu, sigma=sigma)
hist(x, freq=FALSE)
curve(dNEE(x, mu=mu, sigma=sigma), col="tomato", add=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.