CS2e | R Documentation |
The Cosine Sine Exponential family
CS2e(mu.link = "log", sigma.link = "log", nu.link = "log")
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
nu.link |
defines the nu.link, with "log" link as the default for the nu parameter. |
The Cosine Sine Exponential distribution with parameters mu
,
sigma
and nu
has density given by
f(x)=\frac{\pi \sigma \mu \exp(\frac{-x} {\nu})}{2 \nu [(\mu\sin(\frac{\pi}{2} \exp(\frac{-x} {\nu})) + \sigma\cos(\frac{\pi}{2} \exp(\frac{-x} {\nu}))]^2},
for x > 0
, \mu > 0
, \sigma > 0
and \nu > 0
.
Returns a gamlss.family object which can be used to fit a CS2e distribution in the gamlss()
function.
Johan David Marin Benjumea, johand.marin@udea.edu.co
chesneau2018newRelDists
dCS2e
# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rCS2e(n=100, mu = 0.1, sigma =1, nu=0.5)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='CS2e',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
exp(coef(mod, what='nu'))
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.45, max=0.55)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.2 - x1)
sigma <- exp(0.8 - x2)
nu <- 0.5
x <- rCS2e(n=n, mu, sigma, nu)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1,family=CS2e,
control=gamlss.control(n.cyc=50000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")
exp(coef(mod, what="nu"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.