# USA ---------
ss_us_prop <- us_ss_age_df |>
select(-n.fish, -n.trips) |>
rename(Year = year)
names(ss_us_prop) <- names(ss_us_prop) %>%
gsub("^a", "", .)
x <- \(d){
d |>
select(-num_fish, -num_samples) |>
rename(Year = year)
}
prop_dfs <- list(can_ss_age_df,
can_ft_age_df,
us_cp_age_df,
us_ms_age_df) |>
map(~{x(.x)})
prop_dfs <- c(prop_dfs, list(ss_us_prop))
names(prop_dfs) <- c("Canada SS",
"Canada FT",
"US CP",
"US MS",
"US SS")
can_ct_ss <- ct |>
select(Year, `Canada Shoreside`)
can_ss <- prop_dfs$`Canada SS` |>
left_join(can_ct_ss, by = "Year")
can_ss_ct_age <- ss |>
mutate(across(-Year, ~{.x = .x * `Canada Shoreside`})) |>
select(-`Canada Shoreside`)
can_ct_ft <- ct |>
select(Year, `Canada Freezer-trawler`)
can_ft <- prop_dfs$`Canada FT` |>
left_join(can_ct_ft, by = "Year")
can_ft_ct_age <- can_ft |>
mutate(across(-Year, ~{.x = .x * `Canada Freezer-trawler`})) |>
select(-`Canada Freezer-trawler`)
us_ct_cp <- ct |>
select(Year, `U.S. Catcher-processor`)
us_cp <- prop_dfs$`US CP` |>
left_join(us_ct_cp, by = "Year")
us_cp_ct_age <- us_cp |>
mutate(across(-Year, ~{.x = .x * `U.S. Catcher-processor`})) |>
select(-`U.S. Catcher-processor`)
us_ct_ms <- ct |>
select(Year, `U.S. Mothership`)
us_ms <- prop_dfs$`US MS` |>
left_join(us_ct_ms, by = "Year")
us_ms_ct_age <- us_ms |>
mutate(across(-Year, ~{.x = .x * `U.S. Mothership`})) |>
select(-`U.S. Mothership`)
us_ct_ss <- ct |>
select(Year, `U.S. Shoreside`)
us_ss <- prop_dfs$`US SS` |>
left_join(us_ct_ss, by = "Year")
us_ss_ct_age <- us_ss |>
mutate(across(-Year, ~{.x = .x * `U.S. Shoreside`})) |>
select(-`U.S. Shoreside`)
# Sum Canada and US catch-at-age
can_caa <- can_ss_ct_age |>
bind_rows(can_ft_ct_age) |>
group_by(Year) |>
summarise_all(sum, na.rm = TRUE)
us_caa <- us_cp_ct_age |>
bind_rows(us_ms_ct_age) |>
bind_rows(us_ss_ct_age) |>
group_by(Year) |>
summarise_all(sum, na.rm = TRUE)
tot_caa <- can_caa |>
bind_rows(us_caa) |>
group_by(Year) |>
summarise_all(sum, na.rm = TRUE)
can_ratio <- can_caa |>
left_join(tot_caa, by = "Year") %>%
mutate(across(ends_with(".x"),
~ ./get(str_replace(cur_column(),
".x", ".y")))) |>
select(-matches(".y$"))
names(can_ratio) <- names(can_ratio) %>%
gsub(".x", "", .)
can_ratio <- can_ratio |>
map_df(~{ifelse(is.nan(.x), 0, .x)})
us_ratio <- us_caa |>
left_join(tot_caa, by = "Year") %>%
mutate(across(ends_with(".x"),
~ ./get(str_replace(cur_column(),
".x", ".y")))) |>
select(-matches(".y$"))
names(us_ratio) <- names(us_ratio) %>%
gsub(".x", "", .)
us_ratio <- us_ratio |>
map_df(~{ifelse(is.nan(.x), 0, .x)})
# Check ratio dfs add to 1 by age
# j <- can_ratio |> bind_rows(us_ratio) |> group_by(Year) |> summarise_all(sum, na.rm = TRUE)
# Get ratios of biomass
prop_biomass_df <- table_survey_by_country(survey_by_country_df, ret_df = T) |>
select(year, canada.prop, us.prop) |>
rename(Year = year) |>
mutate(canada.prop = as.numeric(canada.prop)) |>
mutate(us.prop = as.numeric(us.prop))
# Get biomass at age combined
biomass_at_age_df <- table_at_age(
base_model,
type = "baa",
end_yr = end_yr,
ret_df = TRUE) |>
mutate(Year = as.numeric(Year))
j <- biomass_at_age_df |>
right_join(prop_biomass_df, by = "Year")
can_baa <- j |>
mutate(across(!Year & !canada.prop & !us.prop, ~{.x * canada.prop})) |>
select(-canada.prop, -us.prop)
us_baa <- j |>
mutate(across(!Year & !canada.prop & !us.prop, ~{.x * us.prop})) |>
select(-canada.prop, -us.prop)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.