###################################################################################
# IPW estimator for the Local Average Treatment Effect
#' IPW estimator for the Local Average Treatment Effect
#'
#' @param y An \eqn{n} x \eqn{1} vector of outcome of interest.
#' @param z An \eqn{n} x \eqn{1} vector of binary instruments.
#' @param d An \eqn{n} x \eqn{1} vector of binary treatment adoption indicators.
#' @param x An \eqn{n} x \eqn{k} matrix of covariates used in the propensity score estimation
#' @param ps An \eqn{n} x \eqn{1} vector of fitted propensity scores.
#' @param beta.lin.rep An \eqn{n} x \eqn{k} matrix of estimates of the asymptotic linear representaion of the propensity score parameters (used to compute std. errors)
#' @param trim Logical argument to whether one should trim propensity scores. Deafault is FALSE.
#' @param trim.at Only used if trim=TRUE. If a scalar, trim all propensity score below trim.at and above 1 - trim.at.
#'If a \eqn{2} x \eqn{1} vector, trim all propensity scores below trim.at[1] and all propensity scores above trim.at[2].
#'If NULL, trim.at is set to 1e-10.
#' @param whs An optional \eqn{n} x \eqn{1} vector of weights to be used. If NULL, then every observation has the same weights.
#'
#' @return A list containing the following components:
#' \item{late}{The estimated LATE}
#' \item{late.se}{Estimated std. error of the LATE.}
#' \item{late.inf}{Estimated influence function of LATE estimator.}
#'
#' @references
#' Sant'Anna, Pedro H. C, Song, Xiaojun, and Xu, Qi (2019), \emph{Covariate Distribution Balance via Propensity Scores},
#' Working Paper <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3258551>.
#' @export
LATE <- function(y, z, d, x, ps, beta.lin.rep,
trim = FALSE, trim.at = NULL,
whs = NULL){
#-----------------------------------------------------------------------------
# Define some underlying variables
z <- base::as.vector(z)
d <- base::as.vector(d)
x <- base::as.matrix(x)
ps <- base::as.vector(ps)
beta.lin.rep <- base::as.matrix(beta.lin.rep)
n <- base::dim(x)[1]
k <- base::dim(x)[2]
if(is.null(whs)) whs <- rep(1, n)
if(!is.numeric(whs)) base::stop("weights must be a NULL or a numeric vector")
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# If triming = TRUE, delete observations below threshold and above threshold
if(is.null(trim.at)) trim.at <- 1e-10
len.trim <- length(trim.at)
if(len.trim==1){
ps.min <- trim.at
ps.max <- 1 - trim.at
}
if(len.trim==2){
ps.min <- trim.at[1]
ps.max <- trim.at[2]
}
if(len.trim>2){
base::stop("trim.at must be a scalar or a vector with two elements")
}
ps.keep <- base::as.vector((ps>ps.min) * (ps<ps.max))
# Trimming message
if(trim){
if(base::any(ps < ps.min)) {
base::warning(paste0("Fitted propensity scores smaller than ",
ps.min," were provided. We trimmed them", sep=" "))
}
if(base::any(ps > ps.max)) {
base::warning(paste0("Fitted propensity scores bigger than ",
ps.max," were provided. We trimmed them",
sep=" "))
}
}
#-----------------------------------------------------------------------------
ps.d1 <- sum(ps.keep[d==1])
ps.d0 <- sum(ps.keep[d==0])
if((ps.d1<20) || (ps.d0<20)){
base::warning(paste0("Less than 20 observations with pscore between ",
ps.min," and ", ps.max,
" in either treated or comparison group. Proceed with caution!",
sep=" "))
}
ps.d1.int <- sum((ps[d==1]>0.01)*(ps[d==1]<0.99))
ps.d0.int <- sum((ps[d==0]>0.01)*(ps[d==0]<0.99))
ps.d1.f = min(ps.d1.int, ps.d1 )
ps.d0.f = min(ps.d0.int, ps.d0 )
if((ps.d1.f>0) && (ps.d0.f>0)){
# Compute instrument pscore weights
ps <- base::as.vector(ps)
# First subindex is for d, second for z
w11.ps <- base::as.vector(whs * d * (z/ps))
w10.ps <- base::as.vector(whs * d * ((1 - z)/(1 - ps)))
w01.ps <- base::as.vector(whs * (1 - d) * (z/ps))
w00.ps <- base::as.vector(whs * (1 - d) * ((1 - z) / (1 - ps)))
if(trim){
w11.ps <- w11.ps * ps.keep
w10.ps <- w10.ps * ps.keep
w01.ps <- w01.ps * ps.keep
w00.ps <- w00.ps * ps.keep
}
# Complier weights
w1c <- w11.ps - w10.ps
w0c <- (w01.ps - w00.ps)
kappa1 <- base::mean(w1c)
kappa0 <- base::mean(w0c)
# Normalized complier weights
w1c <- w1c/kappa1
w0c <- w0c/kappa0
#-----------------------------------------------------------------------------
# Estimate LATE
mu.summand.Y1 <- w1c * y
mu.summand.Y0 <- w0c * y
mu.Y1 <- base::mean(mu.summand.Y1)
mu.Y0 <- base::mean(mu.summand.Y0)
late.hat <- mu.Y1 - mu.Y0
#-----------------------------------------------------------------------------
# Compute influence function of LATE
# Estimation effects
mu.Y1.inf1 <- mu.summand.Y1 - w1c %*% base::t(mu.Y1)
mu.Y0.inf1 <- mu.summand.Y0 - w0c %*% base::t(mu.Y0)
#ps derivative
ps.dot.prime <- (ps * (1 - ps)) * x
# estimate the expectations of derivatives wrt pscore parameters
g1.c <- (w11.ps/ps + w10.ps/(1 - ps))/kappa1
g0.c <- (w01.ps/ps + w00.ps/(1 - ps))/kappa0
g1.c <- g1.c * (y - mu.Y1)
g0.c <- g0.c * (y - mu.Y0)
G1.beta <- base::crossprod(ps.dot.prime,
g1.c) / n
G0.beta <- base::crossprod(ps.dot.prime,
g0.c) / n
# Estimations effect themselves
mu.Y1.est.eff <- beta.lin.rep %*% G1.beta
mu.Y0.est.eff <- beta.lin.rep %*% G0.beta
# ate Influence function
mu.Y1.inf <- mu.Y1.inf1 - mu.Y1.est.eff
mu.Y0.inf <- mu.Y0.inf1 - mu.Y0.est.eff
late.inf <- mu.Y1.inf - mu.Y0.inf
#-----------------------------------------------------------------------------
# Compute standard error
late.var <- stats::var(late.inf)
late.se <- base::sqrt(late.var/n)
} else {
late.hat <- NA
late.se <- NA
late.inf <- NA
base::warning(paste0("No observations with pscore between ",
max(ps.min, 0.01)," and ",
min(ps.max, 0.99),
" in either treated or comparison group." , sep=" "))
}
#-----------------------------------------------------------------------------
# Return late.hat, late.se, and late.inf
out <- list(late = late.hat,
late.se = late.se,
late.inf = late.inf)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.