###################################################################################
# IPW estimator for the Distributional Treatment Effect
#' IPW estimator for the Distributional Treatment Effect
#'
#' @param y An \eqn{n} x \eqn{1} vector of outcome of interest.
#' @param z An \eqn{n} x \eqn{1} vector of binary instruments.
#' @param d An \eqn{n} x \eqn{1} vector of binary treatment adoption indicators.
#' @param x An \eqn{n} x \eqn{k} matrix of covariates used in the propensity score estimation
#' @param ps An \eqn{n} x \eqn{1} vector of fitted propensity scores.
#' @param beta.lin.rep An \eqn{n} x \eqn{k} matrix of estimates of the asymptotic linear representaion of the propensity score parameters (used to compute std. errors).
#' @param ysup An \eqn{l} x \eqn{1} vector of points in the support of y to compute the LDTE at.
#' If NULL, then we set ysup to be all unique points in the support of y.
#' @param trim Logical argument to whether one should trim propensity scores. Deafault is FALSE.
#' @param trim.at Only used if trim=TRUE. If a scalar, trim all propensity score below trim.at and above 1 - trim.at.
#'If a \eqn{2} x \eqn{1} vector, trim all propensity scores below trim.at[1] and all propensity scores above trim.at[2].
#'If NULL, trim.at is set to 1e-10.
#' @param whs An optional \eqn{n} x \eqn{1} vector of weights to be used. If NULL, then every observation has the same weights.
#'
#' @return A list containing the following components:
#' \item{ldte}{The estimated LDTE}
#' \item{ldte.se}{Estimated (pointwise) std. error of the LDTE.}
#' \item{ldte.inf}{Estimated influence function of LDTE estimator.}
#' \item{ysup}{The evaluation points of LDTE.}
#'
#' @references
#' Sant'Anna, Pedro H. C, Song, Xiaojun, and Xu, Qi (2019), \emph{Covariate Distribution Balance via Propensity Scores},
#' Working Paper <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3258551>.
#' @export
LDTE <- function(y, z, d, x, ps, beta.lin.rep, ysup = NULL,
trim = FALSE, trim.at = NULL,
whs = NULL){
# Define some underlying variables
z <- base::as.vector(z)
d <- base::as.vector(d)
x <- base::as.matrix(x)
ps <- base::as.vector(ps)
beta.lin.rep <- base::as.matrix(beta.lin.rep)
n <- base::dim(x)[1]
k <- base::dim(x)[2]
if(is.null(whs)) whs <- rep(1, n)
if(!is.numeric(whs)) base::stop("weights must be a NULL or a numeric vector")
#-----------------------------------------------------------------------------
# set up all unique points in the data (use it as ysup, if NULL)
yy <- sort(unique(y))
if (is.null(ysup) == TRUE){
ysup <- yy
}
st <- length(ysup)
ysup <- base::as.vector(ysup)
#-----------------------------------------------------------------------------
# If triming = TRUE, delete observations below threshold and above threshold
if(is.null(trim.at)) trim.at<- 1e-10
len.trim <- length(trim.at)
if(len.trim==1){
ps.min <- trim.at
ps.max <- 1 - trim.at
}
if(len.trim==2){
ps.min <- trim.at[1]
ps.max <- trim.at[2]
}
if(len.trim>2){
base::stop("trim.at must be a scalar or a vector with two elements")
}
ps.keep <- base::as.vector((ps>ps.min)*(ps<ps.max))
# Trimming message
if(trim){
if(base::any(ps < ps.min)) {
base::warning(paste0("Fitted propensity scores smaller than ", ps.min," were provided. We trimmed them", sep=" "))
}
if(base::any(ps > ps.max)) {
base::warning(paste0("Fitted propensity scores bigger than ", ps.max," were provided. We trimmed them", sep=" "))
}
}
#-----------------------------------------------------------------------------
ps.d1 <- sum(ps.keep[d==1])
ps.d0 <- sum(ps.keep[d==0])
if((ps.d1<20) || (ps.d0<20)){
base::warning(paste0("Less than 20 observations with pscore between ", ps.min," and ", ps.max,
" in either treated or comparison group. Proceed with caution!" , sep=" "))
}
ps.d1.int <- sum( (ps[d==1]>0.01)*(ps[d==1]<0.99))
ps.d0.int <- sum( (ps[d==0]>0.01)*(ps[d==0]<0.99))
ps.d1.f = min(ps.d1.int, ps.d1 )
ps.d0.f = min(ps.d0.int, ps.d0 )
if((ps.d1.f>0) && (ps.d0.f>0)){
# Compute instrument pscore weights
ps <- base::as.vector(ps)
# First subindex is for d, second for z
w11.ps <- base::as.vector(whs * d * (z/ps))
w10.ps <- base::as.vector(whs * d * ((1 - z)/(1 - ps)))
w01.ps <- base::as.vector(whs * (1 - d) * (z/ps))
w00.ps <- base::as.vector(whs * (1 - d) * ((1 - z) / (1 - ps)))
if(trim){
w11.ps <- w11.ps * ps.keep
w10.ps <- w10.ps * ps.keep
w01.ps <- w01.ps * ps.keep
w00.ps <- w00.ps * ps.keep
}
# Complier weights
w1c <- w11.ps - w10.ps
w0c <- w01.ps - w00.ps
kappa1 <- base::mean(w1c)
kappa0 <- base::mean(w0c)
# Normalized complier weights
w1c <- w1c/kappa1
w0c <- w0c/kappa0
#-----------------------------------------------------------------------------
# Estimate DTE
# First compute weighted empirical cdfs
y.sorted <- base::as.vector(base::sort(y))
y.order <- base::as.vector(base::order(y))
F1.c.hat <- w.ecdf(y.sorted, base::as.vector(w1c[y.order] / n))
F0.c.hat <- w.ecdf(y.sorted, base::as.vector(w0c[y.order] / n))
#Rearrange CDF Y(1) for compliers (guarantee it is non-decreasing)
F1.c.hat <- Rearrangement::rearrangement(data.frame(y.sorted), F1.c.hat(y.sorted))
F1.c.hat[F1.c.hat > 1] <- 1
F1.c.hat[F1.c.hat < 0] <- 0
F1.c.hat <- r.ecdf(y.sorted, F1.c.hat)
#rearrange CDF Y(0) for compliers
F0.c.hat <- Rearrangement::rearrangement(data.frame(y.sorted), F0.c.hat(y.sorted))
F0.c.hat[F0.c.hat > 1] <- 1
F0.c.hat[F0.c.hat < 0] <- 0
F0.c.hat <- r.ecdf(y.sorted, F0.c.hat)
# Now compute rearranged CDF
F1.hat.est <- F1.c.hat(ysup)
F0.hat.est <- F0.c.hat(ysup)
# LQTE
ldte.hat <- F1.hat.est - F0.hat.est
#-----------------------------------------------------------------------------
# Compute influence function of LQTE
# First, get the score of 1(Y(1)<= y) - n x length(FY(j)(y))
ld.summand.Y1 <- base::matrix(w1c * outer(y, ysup, "<="), nrow = n)
ld.summand.Y0 <- base::matrix(w0c * outer(y, ysup, "<="), nrow = n)
#Numerator of influence function - without estimation effect - n x length(ysup)
ld.Y1.inf1 <- ld.summand.Y1 - base::matrix(outer(w1c, F1.hat.est, "*"), nrow = n)
ld.Y0.inf1 <- ld.summand.Y0 - base::matrix(outer(w0c, F0.hat.est, "*"), nrow = n)
# Estimation effects
#ps derivative - n by k
ps.dot.prime <- (ps * (1 - ps)) * x
# estimate the expectations of derivatives wrt pscore parameters -
g1.c <- (w11.ps/ps + w10.ps/(1 - ps))/kappa1
g0.c <- (w01.ps/ps + w00.ps/(1 - ps))/kappa0
g1.c <- base::matrix(g1.c * outer(y, ysup, "<="), nrow = n) -
base::matrix(outer(g1.c, F1.hat.est, "*"), nrow = n)
g0.c <- base::matrix(g0.c * outer(y, ysup, "<="), nrow = n) -
base::matrix(outer(g0.c, F0.hat.est, "*"), nrow = n)
G1.beta <- base::crossprod(ps.dot.prime,
g1.c) / n # k x n.tau
G0.beta <- base::crossprod(ps.dot.prime,
g0.c) / n # k x n.tau
# Compute the influence function at each ysup
ld.Y1.inf <- ld.Y1.inf1 - beta.lin.rep %*% G1.beta
ld.Y0.inf <- ld.Y0.inf1 - beta.lin.rep %*% G0.beta
# Influence function of the dte
ldte.inf <- ld.Y1.inf - ld.Y0.inf # n x st
#-----------------------------------------------------------------------------
# Compute standard error
ldte.var <- base::diag(stats::cov(ldte.inf))
ldte.se <- base::sqrt(ldte.var/n)
} else {
ldte.hat <- NA
ldte.se <- NA
ldte.inf <- NA
base::warning(paste0("No observations with pscore between ",
max(ps.min, 0.01)," and ",
min(ps.max, 0.99),
" in either treated or comparison group." , sep=" "))}
#-----------------------------------------------------------------------------
# Return dte.hat, dte.se, dte.inf, and ysup
out <- list(ldte = ldte.hat,
ldte.se = ldte.se,
ldte.inf = ldte.inf,
ysup = ysup)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.