solve_subproblem_penalized: Solve subproblems via coordinate descent with Stochastic...

Description Usage Arguments Value

View source: R/data_integration_sketched.R

Description

Solve the subproblem given which parameter set to update. For each subproblem, the exact solution is obtained. The sketched objective function is solve w.r.t the set of parameter with additional penalty in the form of

\frac{1}{μ_t} \|w-w^{}t-1\|

, where the step size

mu_t = 0.1\times iter

.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
solve_subproblem_penalized(
  params.to.update = c("W", "lambda", "H"),
  X.list,
  W,
  H.list,
  b.list,
  lambda.list,
  iter,
  params.list.last,
  verbose = T
)

Arguments

params.to.update

a characteristic scalar, choice of ('W','lambda','b','H'), specifying which set of parameters to update

X.list

a list of ncells-by-ngenes gene expression matrix

W

ngenes-by-r numeric matrix.

H.list

A list of factor loading matrix of size ncells-by-r

b.list

A list of shift vector of size p (ngenes).

lambda.list

A list of scaling vector of size p (ngenes).

iter

integer, the current iteration

params.list.last

The parameters from last iteration, for SPP

verbose

boolean scalar, whether to show extensive program logs (default TRUE)

Value

a list containing updated parameters: W, H.list, lambda.list, b.list


pengminshi/cFIT documentation built on July 11, 2021, 11:12 p.m.