#' Removes sequences shorter than a given cutoff
#' @inheritParams applyOperation
#' @export
buildConsensus <- function(all_results, config)
{
op_number <- config$current_op_number
op_args <- config$operation_list[[op_number]]
op_full_name <- paste(op_number, op_args$name, sep = '_')
op_dir <- file.path(config$output_dir, config$base_for_names, op_full_name)
dir.create(op_dir, showWarnings = FALSE, recursive = TRUE)
data_source_indx <- grep(op_args$data_source, names(all_results))
stopifnot(length(data_source_indx) == 1)
seq_dat <- all_results[[data_source_indx]]$seq_dat
required_dominance <- .05
minimum_score <- 35
per_read_metrics <- data.frame(read_name = as.character(seq_dat@id),
stringsAsFactors = F)
per_read_metrics$pid <- gsub("_(fwd)|_(rev)$", "", gsub("^.*_PID:" , "", per_read_metrics$read_name))
per_read_metrics$clean_pid <- gsub("_" , "", per_read_metrics$pid)
full_alphabet <- row.names(consensusMatrix(DNAStringSet('A')))
all_consensuses <- NULL
pid <- unique(per_read_metrics$clean_pid)[1]
uniq_pids <- unique(per_read_metrics$clean_pid)
registerDoMC(cores = config$ncpu)
tmp_x <- foreach(pid = uniq_pids, .combine = "c") %dopar% {
# for (pid in unique(per_read_metrics$clean_pid)){
bin_seq_indx <- which(per_read_metrics$clean_pid == pid)
bin_seqs <- seq_dat[bin_seq_indx]
# writeFastq(bin_seqs, '/tmp/bin.fastq', compress=F)
qual_mat <- as(FastqQuality(quality(quality(bin_seqs))), 'matrix')
# tweaked_qual_mat <- gapQualityTweaker_cpp(as.character(bin_seqs@sread),
# qual_mat)
x <- scoreAlignmentPositions_cpp(as.character(bin_seqs@sread),
qual_mat)
z <- list()
z[[paste(config$base_for_names, '_', pid, '_', length(bin_seq_indx), sep = '')]] <- buildConsensus_cpp(x$score_mat, required_dominance, minimum_score)
z
}
con_seqs <- vector(mode = 'character', length=length(tmp_x))
con_scores <- vector(mode = 'character', length=length(tmp_x))
n_Ns <- vector(mode = 'numeric', length=length(tmp_x))
n_gaps <- vector(mode = 'numeric', length=length(tmp_x))
i <- 1
for (i in 1:length(tmp_x)){
stopifnot(nchar(tmp_x[[i]]$consensus) == length(tmp_x[[i]]$consensus_score))
con_seqs[i] <- tmp_x[[i]]$consensus
x <- tmp_x[[i]]$consensus_score
x[x>38] <- 38
x[x<0] <- 0
con_scores[i] <- paste(sapply(x+33, intToUtf8), sep = '', collapse='')
n_Ns[i] <- tmp_x[[i]]$n_Ns
n_gaps[i] <- tmp_x[[i]]$n_gaps
}
consensuses <-
ShortReadQ(sread = DNAStringSet(con_seqs),
quality = BStringSet(con_scores),
id = BStringSet(names(tmp_x)))
per_read_metrics <- data.frame('read_exists' = rep(1, length(consensuses)),
'n_Ns' = n_Ns,
'n_gaps' = n_gaps)
trim_steps <- list(step1 = list(name = 'read_exists',
threshold = 1,
breaks = c(1)))
result <- list(trim_steps = trim_steps,
metrics = list(per_read_metrics = per_read_metrics))
class(result) <- 'buildConsensus'
if (op_args$cache){
result$seq_dat <- consensuses
}
result$input_dat <- consensuses
result$config <- list(op_number = op_number,
op_args = op_args,
op_full_name = op_full_name,
op_dir = op_dir)
return(result)
}
saveToDisk.buildConsensus <- function(result, config, seq_dat)
{
kept <- getKept(result, seq_dat)
trimmed <- getTrimmed(seq_dat = seq_dat, kept_dat = kept)
if (length(kept) > 0)
{
tmp_name <- file.path(result$config$op_dir,
paste(config$base_for_names, '_kept_', result$config$op_args$name, '.fastq', sep = ''))
writeFastq(kept, tmp_name, compress=F)
}
if (length(trimmed) > 0)
{
tmp_name <- file.path(result$config$op_dir,
paste(config$base_for_names, '_trimmed_', result$config$op_args$name, '.fastq', sep = ''))
writeFastq(trimmed, tmp_name, compress=F)
}
return(result)
}
computeMetrics.buildConsensus <- function(result, config, seq_dat)
{
return(result)
}
print.buildConsensus <- function(result, config)
{
cat('\n-------------------')
cat('\nOperation: buildConsensus')
cat('\n-------------------')
cat('\nKept Sequences:\n')
print(result$summary[,c('parameter', 'k_seqs', 'k_mean_length', 'k_mean_qual')])
cat('\n-------------------')
cat('\nTrimmed Sequences:\n')
print(result$summary[,c('parameter', 't_seqs', 't_mean_length', 't_mean_qual')])
invisible(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.