#https://gdc.cancer.gov/about-data/publications/coadread_2012
#library(dendextend)
#library(foreach)
###
library(SNFtool)
library(aricode)
library(cluster)
library(survival)
library(HCfused)
#require(parallel)
source("~/GitHub/HC-fused/application/TCGA_clinical_enrichment.R")
do.sampling <- TRUE
do.LOG <- FALSE
do.PCA <- FALSE
cat("Reading in TCGA data ... \n")
# aml is slow
# melanoma = SKCM
#aml, gbm, lung, sarcoma, colon, liver, ovarian, breast, kidney, melanoma
cancertype <- "aml"
LOC <- paste("~/TCGA_data/NAR Data/",cancertype,"/", sep="")
#mRNA
mRNAX <- t(read.table(paste(LOC,"exp", sep="")))
#Methy
MethyX <- t(read.table(paste(LOC,"methy", sep="")))
#miRNA
miRNAX <- t(read.table(paste(LOC,"mirna", sep="")))
#CLIN
survivalX <- read.table(paste(LOC,"survival", sep=""), header=TRUE)
# define the patients
patientsX <- intersect(intersect(rownames(mRNAX),rownames(MethyX)),rownames(miRNAX))
n.iter=30
# Available methods
methods = c("single", "complete", "average", "mcquitty", "ward.D",
"ward.D2", "centroid", "median")
P_FUSED <- rep(NaN,n.iter)
CLIN_FUSED <- vector("list", n.iter)
HEAT <- matrix(0, length(methods), length(methods))
rownames(HEAT) <- methods
colnames(HEAT) <- methods
if(!do.sampling){
n.iter=1
}
for (xx in 1:n.iter){
cat(xx, "of", n.iter,"\n")
if(do.sampling){
patients <- sample(patientsX,100)
}else{
patients <- patientsX
}
mRNA <- mRNAX[patients,]
Methy <- MethyX[patients,]
miRNA <- miRNAX[patients,]
if(do.LOG==TRUE){
ids <- which(mRNA==0)
if(length(ids)!=0){
mRNA[ids] <- min(mRNA[-ids])
mRNA <- log(mRNA)
}
ids <- which(Methy==0)
if(length(ids)!=0){
Methy[ids] <- min(Methy[-ids])
Methy <- log(Methy)
}
ids <- which(miRNA==0)
if(length(ids)!=0){
miRNA[ids] <- min(miRNA[-ids])
miRNA <- log(miRNA)
}
}# End of do LOG
#normalization
mRNA = standardNormalization(mRNA)
Methy = standardNormalization(Methy)
miRNA = standardNormalization(miRNA)
#PCA
if(do.PCA==TRUE){
zero <- apply(mRNA,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(mRNA[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(mRNA[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#mRNA <- pca$x[,1:id]
mRNA <- pca$x[,]
zero <- apply(Methy,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(Methy[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(Methy[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#Methy <- pca$x[,1:id]
Methy <- pca$x[,]
zero <- apply(miRNA,2,sum)
zero.ids <- which(zero==0)
if(length(zero.ids)==0){
pca <- prcomp(miRNA[,], center = TRUE, scale. = TRUE)
}else{
pca <- prcomp(miRNA[,-zero.ids], center = TRUE, scale. = TRUE)
}
summ <- summary(pca)
csum <- cumsum(summ$importance[2,])
id <- which(csum>0.90)[1]
#miRNA <- pca$x[,1:id]
miRNA <- pca$x[,]
}# End of IF PCA
if(is.element(cancertype,c("breast","lung","gbm"))){
patients <- tolower(patients)
patients <- strsplit(patients,".", fixed=TRUE)
patients <- sapply(patients, function(x){paste(x[1:3],collapse=".")})
ids <- match(patients,as.character(survivalX[,1]))
###########
}else{
#for all other
ids <- match(gsub(".", "-", patients, fixed=TRUE),as.character(survivalX[,1]))
}
survival <- survivalX[ids,]
## HCfused - original
HC.iter=30
# Available methods
methods = c("single", "complete", "average", "mcquitty", "ward.D",
"ward.D2", "centroid", "median")
print("##################")
print("GENTIC ALGORITHM")
print("##################")
# Perform the genetic algorithm
res1 <- HC_fused_subtyping_ga(list(mRNA, Methy, miRNA))
print(round(res1@solution))
sel <- methods[round(res1@solution)]
print("####################")
print("Selected Methods:")
print(sel)
print("####################")
HEAT[sel[1], sel[2]] <- HEAT[sel[1], sel[2]] + 1
HEAT[sel[2], sel[1]] <- HEAT[sel[2], sel[1]] + 1
res2 <- HC_fused_subtyping_ens(list(mRNA,Methy,miRNA),
max.k=10,
this_method=c(sel[1],sel[2]),
HC.iter=HC.iter)
cl_fused <- res2$cluster
names(cl_fused) <- survival$PatientID
#################################################################
groups <- factor(cl_fused)
names(groups) = rownames(survival)
coxFit <- coxph(Surv(time = Survival, event = Death) ~ groups, data = survival, ties="exact")
cox_fused <- round(summary(coxFit)$sctest[3],digits = 40);
#print(cox_fused)
P_FUSED[xx] = round(summary(coxFit)$sctest[3],digits = 40);
print(P_FUSED)
# Clinical enrichment
#CLIN_FUSED[[xx]] <- check.clinical.enrichment(cl_fused,
# subtype.name=cancertype)
#print(CLIN_FUSED)
print(HEAT)
}#end of loop
RESULT_log <- -log10(P_FUSED)
boxplot(RESULT_log, col="grey", ylab="-log10(logrank p-value)", las=1,
outline=FALSE, cex.axis=0.9)
abline(h=-log10(0.05), col="red")
# Clinical enrichment
CLIN_ENRICH = Reduce('rbind',CLIN_FUSED)
write.table(CLIN_ENRICH, paste("Parea1_CLIN_ENRICH_",cancertype,".txt", sep=""))
stop("Allet jut!")
## Plots
# Loading
library("survminer")
fit<- survfit(Surv(time=Survival, event=Death) ~ groups, data = survival)
# Drawing survival curves
ggsurvplot(fit, pval = TRUE, risk.table = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.