Description Usage Arguments Details Value Note Author(s) See Also Examples
Create 2-dimensional empirical confidence regions from provided data.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ci2d(x, y = NULL,
nbins=51, method=c("bkde2D","hist2d"),
bandwidth, factor=1.0,
ci.levels=c(0.50,0.75,0.90,0.95,0.975),
show=c("filled.contour","contour","image","none"),
col=topo.colors(length(breaks)-1),
show.points=FALSE,
pch=par("pch"),
points.col="red",
xlab, ylab,
...)
## S3 method for class 'ci2d'
print(x, ...)
|
x |
either a vector containing the x coordinates or a matrix with 2 columns. |
y |
a vector contianing the y coordinates, not required if ‘x’ is matrix |
nbins |
number of bins in each dimension. May be a scalar or a 2 element vector. Defaults to 51. |
method |
One of "bkde2D" (for KernSmooth::bdke2d) or "hist2d" (for gplots::hist2d) specifyting the name of the method to create the 2-d density summarizing the data. Defaults to "bkde2D". |
bandwidth |
Bandwidth to use for |
factor |
Numeric scaling factor for bandwidth. Useful for exploring effect of changing the bandwidth. Defaults to 1.0. |
ci.levels |
Confidence level(s) to use for plotting
data. Defaults to |
show |
Plot type to be displaed. One of "filled.contour", "contour", "image", or "none". Defaults to "filled.contour". |
show.points |
Boolean indicating whether original data values
should be plotted. Defaults to |
pch |
Point type for plots. See |
points.col |
Point color for plotting original data. Defaiults to "red". |
col |
Colors to use for plots. |
xlab, ylab |
Axis labels |
... |
Additional arguments passed to |
This function utilizes either KernSmooth::bkde2D
or
gplots::hist2d
to estmate a 2-dimensional density of the data
passed as an argument. This density is then used to create and
(optionally) display confidence regions.
When bandwidth
is ommited and method="bkde2d"
,
KernSmooth::dpik
is appled in x and y dimensions to select the
bandwidth.
A ci2d
object consisting of a list containing (at least) the
following elements:
nobs |
number of original data points |
x |
x position of each density estimate bin |
y |
y position of each density estimate bin |
density |
Matrix containing the probability density of each bin (count in bin/total count) |
cumDensity |
Matrix where each element contains the cumulative probability density of all elements with the same density (used to create the confidence region plots) |
contours |
List of contours of each confidence region. |
call |
Call used to create this object |
Confidence intervals generated by ci2d are approximate, and are subject to biases and/or artifacts induced by the binning or kernel smoothing method, bin locations, bin sizes, and kernel bandwidth.
The conf2d
function in the r2d2 package may create a more
accurate confidence region, and reports the actual proportion of
points inside the region.
Gregory R. Warnes greg@warnes.net
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | ####
## Basic usage
####
data(geyser, package="MASS")
x <- geyser$duration
y <- geyser$waiting
# 2-d confidence intervals based on binned kernel density estimate
ci2d(x,y) # filled contour plot
ci2d(x,y, show.points=TRUE) # show original data
# image plot
ci2d(x,y, show="image")
ci2d(x,y, show="image", show.points=TRUE)
# contour plot
ci2d(x,y, show="contour", col="black")
ci2d(x,y, show="contour", col="black", show.points=TRUE)
####
## Control Axis scales
####
x <- rnorm(2000, sd=4)
y <- rnorm(2000, sd=1)
# 2-d confidence intervals based on binned kernel density estimate
ci2d(x,y)
# 2-d confidence intervals based on 2d histogram
ci2d(x,y, method="hist2d", nbins=25)
# Require same scale for each axis, this looks oval
ci2d(x,y, range.x=list(c(-20,20), c(-20,20)))
ci2d(x,y, method="hist2d", same.scale=TRUE, nbins=25) # hist2d
####
## Control smoothing and binning
####
x <- rnorm(2000, sd=4)
y <- rnorm(2000, mean=x, sd=2)
# Default 2-d confidence intervals based on binned kernel density estimate
ci2d(x,y)
# change the smoother bandwidth
ci2d(x,y,
bandwidth=c(sd(x)/8, sd(y)/8)
)
# change the smoother number of bins
ci2d(x,y, nbins=10)
ci2d(x,y)
ci2d(x,y, nbins=100)
# Default 2-d confidence intervals based on 2d histogram
ci2d(x,y, method="hist2d", show.points=TRUE)
# change the number of histogram bins
ci2d(x,y, nbin=10, method="hist2d", show.points=TRUE )
ci2d(x,y, nbin=25, method="hist2d", show.points=TRUE )
####
## Perform plotting manually
####
data(geyser, package="MASS")
# let ci2d handle plotting contours...
ci2d(geyser$duration, geyser$waiting, show="contour", col="black")
# call contour() directly, show the 90 percent CI, and the mean point
est <- ci2d(geyser$duration, geyser$waiting, show="none")
contour(est$x, est$y, est$cumDensity,
xlab="duration", ylab="waiting",
levels=0.90, lwd=4, lty=2)
points(mean(geyser$duration), mean(geyser$waiting),
col="red", pch="X")
####
## Extract confidence region values
###
data(geyser, package="MASS")
## Empirical 90 percent confidence limits
quantile( geyser$duration, c(0.05, 0.95) )
quantile( geyser$waiting, c(0.05, 0.95) )
## Bivariate 90 percent confidence region
est <- ci2d(geyser$duration, geyser$waiting, show="none")
names(est$contours) ## show available contours
ci.90 <- est$contours[names(est$contours)=="0.9"] # get region(s)
ci.90 <- rbind(ci.90[[1]],NA, ci.90[[2]], NA, ci.90[[3]]) # join them
print(ci.90) # show full contour
range(ci.90$x, na.rm=TRUE) # range for duration
range(ci.90$y, na.rm=TRUE) # range for waiting
####
## Visually compare confidence regions
####
data(geyser, package="MASS")
## Bivariate smoothed 90 percent confidence region
est <- ci2d(geyser$duration, geyser$waiting, show="none")
names(est$contours) ## show available contours
ci.90 <- est$contours[names(est$contours)=="0.9"] # get region(s)
ci.90 <- rbind(ci.90[[1]],NA, ci.90[[2]], NA, ci.90[[3]]) # join them
plot( waiting ~ duration, data=geyser,
main="Comparison of 90 percent confidence regions" )
polygon( ci.90, col="green", border="green", density=10)
## Univariate Normal-Theory 90 percent confidence region
mean.x <- mean(geyser$duration)
mean.y <- mean(geyser$waiting)
sd.x <- sd(geyser$duration)
sd.y <- sd(geyser$waiting)
t.value <- qt(c(0.05,0.95), df=gdata::nobs(geyser$duration), lower=TRUE)
ci.x <- mean.x + t.value* sd.x
ci.y <- mean.y + t.value* sd.y
plotCI(mean.x, mean.y,
li=ci.x[1],
ui=ci.x[2],
barcol="blue", col="blue",
err="x",
pch="X",
add=TRUE )
plotCI(mean.x, mean.y,
li=ci.y[1],
ui=ci.y[2],
barcol="blue", col="blue",
err="y",
pch=NA,
add=TRUE )
# rect(ci.x[1], ci.y[1], ci.x[2], ci.y[2], border="blue",
# density=5,
# angle=45,
# col="blue" )
## Empirical univariate 90 percent confidence region
box <- cbind( x=quantile( geyser$duration, c(0.05, 0.95 )),
y=quantile( geyser$waiting, c(0.05, 0.95 )) )
rect(box[1,1], box[1,2], box[2,1], box[2,2], border="red",
density=5,
angle=-45,
col="red" )
## now a nice legend
legend( "topright", legend=c(" Region type",
"Univariate Normal Theory",
"Univarite Empirical",
"Smoothed Bivariate"),
lwd=c(NA,1,1,1),
col=c("black","blue","red","green"),
lty=c(NA,1,1,1)
)
####
## Test with a large number of points
####
## Not run:
x <- rnorm(60000, sd=1)
y <- c( rnorm(40000, mean=x, sd=1),
rnorm(20000, mean=x+4, sd=1) )
hist2d(x,y)
ci <- ci2d(x,y)
ci
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.