library(DCFusion)
library(HMCBLR)
##### Initialise example #####
seed <- 2021
set.seed(seed)
nsamples <- 10000
ndata <- 1000
time_choice <- 0.5
n_cores <- parallel::detectCores()
true_beta <- c(-3, 1.2, -0.5, 0.8, 3)
frequencies <- c(0.2, 0.3, 0.5, 0.01) # must have length = length(true_beta)-1
# simulate data set
simulated_data <- simulate_LR_data(N = ndata,
alpha = true_beta[1],
frequencies = frequencies,
coefficients = true_beta[2:length(true_beta)],
seed = seed)
# check activity of the parameters
check_activity(simulated_data)
##### Sampling from full posterior #####
full_data_count <- unique_row_count(y = simulated_data[,1],
X = cbind('intercept' = rep(1, ndata), simulated_data[,2:ncol(simulated_data)]))$full_data_count
full_posterior <- hmc_sample_BLR(full_data_count = full_data_count,
C = 1,
prior_means = rep(0, 5),
prior_variances = rep(1, 5),
iterations = nsamples + 10000,
warmup = 10000,
chains = 1,
seed = seed,
output = T)
##### Sampling from sub-posterior C=16 #####
data_split_16 <- split_data(simulated_data, y_col_index = 1, X_col_index = 2:ncol(simulated_data), C = 16, as_dataframe = F)
sub_posteriors_16 <- hmc_base_sampler_BLR(nsamples = nsamples,
data_split = data_split_16,
C = 16,
prior_means = rep(0, 5),
prior_variances = rep(1, 5),
warmup = 10000,
seed = seed,
output = T)
##### Applying other methodologies #####
print('Applying other methodologies')
consensus_mat_16 <- consensus_scott(S = 16, samples_to_combine = sub_posteriors_16, indep = F)
consensus_sca_16 <- consensus_scott(S = 16, samples_to_combine = sub_posteriors_16, indep = T)
neiswanger_true_16 <- neiswanger(S = 16,
samples_to_combine = sub_posteriors_16,
anneal = TRUE)
neiswanger_false_16 <- neiswanger(S = 16,
samples_to_combine = sub_posteriors_16,
anneal = FALSE)
weierstrass_importance_16 <- weierstrass(Samples = sub_posteriors_16,
method = 'importance')
weierstrass_rejection_16 <- weierstrass(Samples = sub_posteriors_16,
method = 'reject')
##### Applying Fusion #####
##### Poisson (Hypercube Centre) #####
print('Poisson Fusion (hypercube centre)')
Poisson_hc_16 <- bal_binary_fusion_SMC_BLR(N_schedule = rep(nsamples, 4),
m_schedule = rep(2, 4),
time_schedule = rep(time_choice, 4),
base_samples = sub_posteriors_16,
L = 5,
dim = 5,
data_split = data_split_16,
prior_means = rep(0, 5),
prior_variances = rep(1, 5),
C = 16,
precondition = TRUE,
resampling_method = 'resid',
ESS_threshold = 0.5,
cv_location = 'hypercube_centre',
diffusion_estimator = 'Poisson',
seed = seed,
n_cores = n_cores,
print_progress_iters = 500)
Poisson_hc_16$particles <- resample_particle_y_samples(particle_set = Poisson_hc_16$particles[[1]],
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
Poisson_hc_16$proposed_samples <- Poisson_hc_16$proposed_samples[[1]]
print(integrated_abs_distance(full_posterior, Poisson_hc_16$particles$y_samples))
##### NB (Hypercube Centre) #####
print('NB Fusion (hypercube centre)')
NB_hc_16 <- bal_binary_fusion_SMC_BLR(N_schedule = rep(nsamples, 4),
m_schedule = rep(2, 4),
time_schedule = rep(time_choice, 4),
base_samples = sub_posteriors_16,
L = 5,
dim = 5,
data_split = data_split_16,
prior_means = rep(0, 5),
prior_variances = rep(1, 5),
C = 16,
precondition = TRUE,
resampling_method = 'resid',
ESS_threshold = 0.5,
cv_location = 'hypercube_centre',
diffusion_estimator = 'NB',
seed = seed,
n_cores = n_cores,
print_progress_iters = 500)
NB_hc_16$particles <- resample_particle_y_samples(particle_set = NB_hc_16$particles[[1]],
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
NB_hc_16$proposed_samples <- NB_hc_16$proposed_samples[[1]]
print(integrated_abs_distance(full_posterior, NB_hc_16$particles$y_samples))
##### IAD #####
integrated_abs_distance(full_posterior, Poisson_hc_16$particles$y_samples)
integrated_abs_distance(full_posterior, NB_hc_16$particles$y_samples)
integrated_abs_distance(full_posterior, consensus_mat_16$samples)
integrated_abs_distance(full_posterior, consensus_sca_16$samples)
integrated_abs_distance(full_posterior, neiswanger_true_16$samples)
integrated_abs_distance(full_posterior, neiswanger_false_16$samples)
integrated_abs_distance(full_posterior, weierstrass_importance_16$samples)
integrated_abs_distance(full_posterior, weierstrass_rejection_16$samples)
##### Save data #####
save.image('SD16.RData')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.