Description Usage Arguments Details Functions Source Examples
is_logscale
tells if some numeric data is in log scale,
e.g., normalized microarray data, using the same heuristic as GEO2R.
1 2 3 4 5 | is_logscale(x, robust = TRUE, extremes = c(0.02, 0.98))
has_logscale_outliers(x, ...)
log_transform(x, base = 2)
|
x |
a numeric data object (matrix, vector, ExpressionSet) |
robust |
logical that indicates if the decision should be done robustly by removing the more extreme values. |
extremes |
a length-2 numeric vector that gives the lower and upper
quantiles used to remove extreme values.
Only relevant when |
... |
other arguments passed to is_logscale, like argument |
base |
log base to use. |
The data needs to be of reasonable size and variance for the detection heuristic to work correctly.
has_logscale_outliers
: tests if there are outliers to the log-scale distribution.
1 2 3 | x <- matrix(rnorm(20*10, mean=500), 20, 10)
is_logscale(x)
is_logscale(log_transform(x))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.