#' Create figure 'figure_error_tree_size'
#' @param n_taxa the number of taxa, as returned from read_collected_n_taxa
#' @param nltt_stats the nLTT statistics, as returned from read_collected_nltt_stats
#' @param filename name of the file the figure will be saved to
#' @export
create_figure_error_tree_size <- function(
n_taxa,
nltt_stats,
filename
) {
sti <- NULL; rm(sti) # nolint, should fix warning: no visible binding for global variable
ai <- NULL; rm(ai) # nolint, should fix warning: no visible binding for global variable
nltt_stat <- NULL; rm(nltt_stat) # nolint, should fix warning: no visible binding for global variable
scr <- NULL; rm(scr) # nolint, should fix warning: no visible binding for global variable
mean_durspec <- NULL; rm(mean_durspec) # nolint, should fix warning: no visible binding for global variable
sequence_length <- NULL; rm(sequence_length) # nolint, should fix warning: no visible binding for global variable
..eq.label.. <- NULL; rm(..eq.label..) # nolint, should fix warning: no visible binding for global variable
..adj.rr.label.. <- NULL; rm(..adj.rr.label..) # nolint, should fix warning: no visible binding for global variable
nltt_stats$filename <- as.vector(nltt_stats$filename)
nltt_stats$filename <- basename(nltt_stats$filename)
# Take the mean of the nLTT stats
`%>%` <- dplyr::`%>%`
nltt_stat_means <- nltt_stats %>% dplyr::group_by(filename, sti, ai, pi) %>%
dplyr::summarise(mean = mean(nltt_stat))
testit::assert(all(names(nltt_stat_means)
== c("filename", "sti", "ai", "pi", "mean")))
# Connect the mean nLTT stats and n_taxa
testit::assert("filename" %in% names(n_taxa))
testit::assert("filename" %in% names(nltt_stat_means))
df_mean <- merge(x = nltt_stat_means, y = n_taxa, by = "filename", all = TRUE)
df <- merge(x = nltt_stats, y = n_taxa, by = "filename", all = TRUE)
n_all <- nrow(df)
df <- stats::na.omit(df)
svg("~/figure_error_tree_size.svg")
n <- 2000
cut_x <- 2000
cut_y <- 0.125
set.seed(42)
options(warn = 1) # Be milder for ylim
ggplot2::ggplot(
data = dplyr::sample_n(df, size = n),
ggplot2::aes(x = n_taxa, y = nltt_stat)
) + ggplot2::geom_point(alpha = 0.1) +
ggplot2::geom_smooth(method = "lm", color = "blue", size = 0.5, alpha = 0.25) +
ggpmisc::stat_poly_eq(
formula = y ~ x,
eq.with.lhs = paste(latex2exp::TeX("$\\Delta_{nLTT}$"), "~`=`~"),
eq.x.rhs = latex2exp::TeX(" $n_t$"),
ggplot2::aes(label = paste(..eq.label.., ..adj.rr.label.., sep = "~~~~")),
color = "blue",
parse = TRUE) +
ggplot2::geom_smooth(method = "loess", color = "red", size = 0.5, alpha = 0.25) +
ggplot2::ylim(c(0, cut_y)) +
ggplot2::xlab(latex2exp::TeX("$n_t$")) +
ggplot2::ylab(latex2exp::TeX("$\\Delta_{nLTT}$")) +
ggplot2::labs(
title = "The effect of number of taxa on nLTT statistic",
caption = paste0("(n = ", n, "/", n_all, "), error_tree_size")
) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
ggplot2::ggsave(file = filename, width = 7, height = 7)
ggplot2::ggplot(
data = stats::na.omit(df_mean),
ggplot2::aes(x = n_taxa, y = mean)
) +
ggplot2::geom_point() +
ggplot2::geom_smooth(method = "lm", color = "blue", size = 0.5, alpha = 0.25) +
ggpmisc::stat_poly_eq(
formula = y ~ x,
eq.with.lhs = paste(latex2exp::TeX("$\\bar{\\Delta_{nLTT}}$"), "~`=`~"),
eq.x.rhs = latex2exp::TeX(" $n_t$"),
ggplot2::aes(label = paste(..eq.label.., ..adj.rr.label.., sep = "~~~~")),
color = "blue",
parse = TRUE) +
ggplot2::geom_smooth(method = "loess", color = "red", size = 0.5, alpha = 0.25) +
ggplot2::ylim(c(0, cut_y)) +
ggplot2::xlab(latex2exp::TeX("$n_t$")) +
ggplot2::ylab(latex2exp::TeX("$\\bar{\\Delta_{nLTT}}$")) +
ggplot2::labs(
title = "The effect of number of taxa on mean nLTT statistic",
caption = "Figure 'error_tree_size_mean'"
) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
ggplot2::ggsave(file = filename, width = 7, height = 7)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.