View source: R/decomposeTumorGenomes.R
decomposeTumorGenomes | R Documentation |
'decomposeTumorGenomes()' is the core function of this package. It decomposes tumor genomes into a given set of mutational signatures by computing their contributions (exposures) to the mutational load via quadratic programming. The function takes a set of mutational signatures and the mutation features of one or more tumor genomes and computes weights, i.e., contributions for each of the signatures in each individual genome. Alternatively, the function can determine for each genome only a subset of signatures whose contributions are sufficient to exceed a user-given minimum threshold for the explained variance of the genome's mutation patterns.
decomposeTumorGenomes(genomes, signatures, minExplainedVariance=NULL, minNumSignatures=2, maxNumSignatures=NULL, greedySearch=FALSE, constrainToMaxContribution=FALSE, tolerance=0.1, verbose=FALSE)
genomes |
(Mandatory) Can be either a vector, a data frame or a
matrix (for an individual tumor genome), or a list of one of these
object types (for multiple tumors). Each tumor genome must be of the
same form as the |
signatures |
(Mandatory) A list of vectors, data frames or matrices. Each of the objects represents one mutational signature. Vectors are used for Alexandrov signatures, data frames or matrices for Shiraishi signatures. |
minExplainedVariance |
(Optional) If |
minNumSignatures |
(Optional) Used if |
maxNumSignatures |
(Optional) If |
greedySearch |
(Optional) Used only in case |
constrainToMaxContribution |
(Optional) [Note: this is EXPERIMENTAL
and is usually not needed!] If |
tolerance |
(Optional) If |
verbose |
(Optional) If |
A list of signature weight vectors (also called 'exposures'), one
for each tumor genome. E.g., the first vector element of the first list
object is the weight/contribution of the first signature to the first
tumor genome. IMPORTANT: If minExplainedVariance
is specified, then
the exposures of a genome will NOT be returned if the minimum explained
variance is not reached within the requested minimum and maximum numbers
of signatures (minNumSignatures
and maxNumSignatures
)! The
corresponding exposure vector will be set to NULL
.
Rosario M. Piro, Politecnico di Milano
Sandra Krueger, Freie Universitaet Berlin
Maintainer: Rosario
M. Piro
E-Mail: <rmpiro@gmail.com> or <rosariomichael.piro@polimi.it>
http://rmpiro.net/decompTumor2Sig/
Krueger, Piro (2019) decompTumor2Sig: Identification of mutational
signatures active in individual tumors. BMC Bioinformatics
20(Suppl 4):152.
decompTumor2Sig
### get Alexandrov signatures from COSMIC signatures <- readAlexandrovSignatures() ### load reference genome refGenome <- BSgenome.Hsapiens.UCSC.hg19::BSgenome.Hsapiens.UCSC.hg19 ### read breast cancer genomes from Nik-Zainal et al (PMID: 22608084) gfile <- system.file("extdata", "Nik-Zainal_PMID_22608084-VCF-convertedfromMPF.vcf.gz", package="decompTumor2Sig") genomes <- readGenomesFromVCF(gfile, numBases=3, type="Alexandrov", trDir=FALSE, refGenome=refGenome, verbose=FALSE) ### compute exposures exposures <- decomposeTumorGenomes(genomes, signatures, verbose=FALSE) ### (for further examples on searching subsets, please see the vignette)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.