R/rows_add.R

Defines functions rows_add

Documented in rows_add

#------------------------------------------------------------------------------#
#
#                /$$
#               | $$
#     /$$$$$$  /$$$$$$
#    /$$__  $$|_  $$_/
#   | $$  \ $$  | $$
#   | $$  | $$  | $$ /$$
#   |  $$$$$$$  |  $$$$/
#    \____  $$   \___/
#    /$$  \ $$
#   |  $$$$$$/
#    \______/
#
#  This file is part of the 'rstudio/gt' project.
#
#  Copyright (c) 2018-2024 gt authors
#
#  For full copyright and license information, please look at
#  https://gt.rstudio.com/LICENSE.html
#
#------------------------------------------------------------------------------#


# rows_add() -------------------------------------------------------------------
#' Add one or more rows to a **gt** table
#'
#' @description
#'
#' It's possible to add new rows to your table with `rows_add()` by supplying
#' the new row data through name-value pairs or two-sided formula expressions.
#' The new rows are added to the bottom of the table by default but can be added
#' internally by using either the `.before` or `.after` arguments. If entirely
#' empty rows need to be added, the `.n_empty` option provides a means to
#' specify the number of blank (i.e., all `NA`) rows to be inserted into the
#' table.
#'
#' @param .data *The gt table data object*
#'
#'   `obj:<gt_tbl>` // **required**
#'
#'   This is the **gt** table object that is commonly created through use of the
#'   [gt()] function.
#'
#' @param ... *Cell data assignments*
#'
#'   `<multiple expressions>` // (or, use `.list`)
#'
#'   Expressions for the assignment of cell values to the new rows by column
#'   name in `.data`. Name-value pairs, in the form of
#'   `<column> = <value vector>` will work, so long as the `<column>` value
#'   exists in the table. Two-sided formulas with column-resolving expressions
#'   (e.g, `<expr> ~ <value vector>`) can also be used, where the left-hand side
#'   corresponds to selections of columns. Column names should be enclosed in
#'   `c()` and select helpers like [starts_with()], [ends_with()], [contains()],
#'   [matches()], and [everything()] can be used in the LHS. The length of the
#'   longest vector in `<value vector>` determines how many new rows will be added.
#'   Single values in `<value vector>` will be repeated down in cases where
#'   there are multiple rows to be added.
#'
#' @param .list *Alternative to `...`*
#'
#'   `<list of multiple expressions>` // (or, use `...`)
#'
#'   Allows for the use of a list as an input alternative to `...`.
#'
#' @param .before,.after *Row used as anchor*
#'
#'   `<row-targeting expression>` // *default:* `NULL` (`optional`)
#'
#'   A single row-resolving expression or row index an be given to either
#'   `.before` or `.after`. The row specifies where the new rows should be
#'   positioned among the existing rows in the input data table. While select
#'   helper functions such as [starts_with()] and [ends_with()] can be used for
#'   row targeting, it's recommended that a single row name or index be used.
#'   This is to ensure that exactly one row is provided to either of these
#'   arguments (otherwise, the function will be stopped). If nothing is provided
#'   for either argument then any new rows will be placed at the bottom of the
#'   table.
#'
#' @param .n_empty *Number of empty rows to add*
#'
#'   `scalar<numeric|integer>(val>=0)` // *default:* `NULL` (`optional`)
#'
#'   An option to add empty rows in lieu of rows containing data that would
#'   otherwise be supplied to `...` or `.list`. If the option is taken, provide
#'   an integer value here.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Targeting the row for insertion with `.before` or `.after`:
#'
#' The targeting of a row for insertion is done through the `.before` or
#' `.after` arguments (only one of these options should be be used). This can be
#' done in a variety of ways. If a stub is present, then we potentially have row
#' identifiers. This is the ideal method to use for establishing a row target.
#' We can use **tidyselect**-style expressions to target a row. It's also
#' possible to use row indices (e.g., `c(3, 5, 6)`) though these index values
#' must correspond to the row numbers of the input data (the indices won't
#' necessarily match those of rearranged rows if row groups are present). One
#' more type of expression is possible, an expression that takes column values
#' (can involve any of the available columns in the table) and returns a logical
#' vector.
#'
#' @section Examples:
#'
#' Let's make a simple **gt** table with the [`exibble`] dataset, using the
#' `row` column for labels in the stub. We'll add a single row to the bottom of
#' the table with `rows_add()`. With name-value pairs, it's possible to add
#' values for the new body cells that correspond to columns available in the
#' table. For any columns that are missed, the related body cells will receive
#' `NA` values.
#'
#' ```r
#' exibble |>
#'   gt(rowname_col = "row") |>
#'   rows_add(
#'     row = "row_9",
#'     num = 9.999E7,
#'     char = "ilama",
#'     fctr = "nine",
#'     group = "grp_b"
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_1.png")`
#' }}
#'
#' If you wanted to place a row somewhere in the middle of the table, we can use
#' either of the `.before` or `.after` arguments in `rows_add()`:
#'
#' ```r
#' exibble |>
#'   gt(rowname_col = "row") |>
#'   rows_add(
#'     row = "row_4.5",
#'     num = 9.923E3,
#'     char = "elderberry",
#'     fctr = "eighty",
#'     group = "grp_a",
#'     .after = "row_4"
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_2.png")`
#' }}
#'
#' Putting a row at the beginning requires the use of the `.before` argument. We
#' can use an index value for the row as in `.before = 1` for maximum easiness:
#'
#' ```r
#' exibble |>
#'   gt(rowname_col = "row") |>
#'   rows_add(
#'     row = "row_0",
#'     num = 0,
#'     char = "apple",
#'     fctr = "zero",
#'     group = "grp_a",
#'     .before = 1
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_3.png")`
#' }}
#'
#' Again with [`exibble`], we can create an example where we insert 'spacer'
#' rows. These are rows without any content and merely serve to add extra
#' vertical space to the table in specific locations. In this case, we'll have a
#' stub with row names and row groups (set up in the [gt()] call). The two rows
#' being added will occupy the bottom row of each group. The only data defined
#' for the two rows involves values for the `row` and `group` columns. It's
#' important that the data for `group` uses the group names already present in
#' the data (`"grp_a"` and `"grp_b"`). The corresponding values for `row` will
#' be `"row_a_end"` and `"row_b_end"`, these will be used later expressions for
#' targeting the rows. Here's the code needed to generate spacer rows at the end
#' of each row group:
#'
#' ```r
#' exibble |>
#'   gt(rowname_col = "row", groupname_col = "group") |>
#'   rows_add(
#'     row = c("row_a_end", "row_b_end"),
#'     group = c("grp_a", "grp_b")
#'   ) |>
#'   tab_style(
#'     style = cell_borders(sides = "top", style = "hidden"),
#'     locations = list(
#'       cells_body(rows = ends_with("end")),
#'       cells_stub(rows = ends_with("end"))
#'     )
#'   ) |>
#'   sub_missing(missing_text = "") |>
#'   text_case_when(
#'     grepl("end", x) ~ "",
#'     .locations = cells_stub()
#'   ) |>
#'   opt_vertical_padding(scale = 0.5)
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_4.png")`
#' }}
#'
#' All missing values were substituted with an empty string (`""`), and that was
#' done by using [sub_missing()]. We removed the top border of the
#' new rows with a call to [tab_style()], targeting those rows where the row
#' labels end with `"end"`. Finally, we get rid of the row labels with the use
#' of [text_case_when()], using a similar strategy of targeting the
#' name of the row label.
#'
#' Another application is starting from nothing (really just the definition of
#' columns) and building up a table using several invocations of `rows_add()`.
#' This might be useful in interactive or programmatic applications. Here's an
#' example where two columns are defined with `dplyr::tibble()`
#' (and no rows are present initially); with two calls of `rows_add()`, two
#' separate rows are added.
#'
#' ```r
#' dplyr::tibble(
#'   time = lubridate::POSIXct(),
#'   event = character(0L)
#' ) |>
#'   gt() |>
#'   rows_add(
#'     time = lubridate::ymd_hms("2022-01-23 12:36:10"),
#'     event = "start"
#'   ) |>
#'   rows_add(
#'     time = lubridate::ymd_hms("2022-01-23 13:41:26"),
#'     event = "completed"
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_5.png")`
#' }}
#'
#' It's possible to use formula syntax in `rows_add()` to perform column
#' resolution along with attaching values for new rows. If we wanted to use an
#' equivalent value for multiple cells in a new row, a valid input would be in
#' the form of `<expr> ~ <value vector>`. In the following example, we create a
#' simple table with six columns (the rendered **gt** table displays four
#' columns and a stub column since the `group` column is used for row group
#' labels). Let's add a single row where some of the cell values added
#' correspond to columns are resolved on the LHS of the formula expressions:
#'
#' ```r
#' dplyr::tibble(
#'   group = c("Group A", "Group B", "Group B"),
#'   id = c("WG-025360", "WG-025361", "WG-025362"),
#'   a = c(1, 6, 2),
#'   b = c(2, 6, 2),
#'   quantity_x = c(83.58, 282.71, 92.20),
#'   quantity_y = c(36.82, 282.71, 87.34)
#' ) |>
#'   gt(rowname_col = "id", groupname_col = "group") |>
#'   rows_add(
#'     starts_with("gr") ~ "Group A",
#'     id = "WG-025363",
#'     c(a, b) ~ 5,
#'     starts_with("quantity") ~ 72.63
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_6.png")`
#' }}
#'
#' We can see that using `starts_with("gr")` yields a successful match to the
#' `group` column with the tangible result being an addition of a row to the
#' `"Group A"` group (the added row is the second one in the rendered **gt**
#' table). Through the use of `c(a, b)`, it was possible to add the value `5` to
#' both the `a` and `b` columns. A similar approach was taken with adding the
#' `72.63` value to the `quantity_x` and `quantity_y` columns though we used the
#' `starts_with("quantity")` expression to get **gt** to resolve those two
#' columns.
#'
#' You can start with an empty table (i.e., no columns and no rows) and add one
#' or more rows to it. In the completely empty table scenario, where you would
#' use something like `dplyr::tibble()` or `data.frame()` with [gt()], the first
#' `rows_add()` could have rows of arbitrary width. In other words, you get to
#' generate table columns (and rows) with a completely empty table via
#' `rows_add()`. Here's an example of that:
#'
#' ```r
#' gt(dplyr::tibble()) |>
#'   rows_add(
#'     msrp = c(29.95, 49.95, 79.95),
#'     item = c("Klax", "Rez", "Ys"),
#'     type = c("A", "B", "X")
#'   ) |>
#'   rows_add(
#'     msrp = 14.95,
#'     item = "D",
#'     type = "Z"
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_7.png")`
#' }}
#'
#' In the above, three columns and three rows were generated. The second usage
#' of `rows_add()` had to use of a subset of those columns (all three were used
#' to create a complete, new row).
#'
#' We can also start with a virtually empty table: one that has columns but no
#' actual rows. With this type of multi-column, zero-row table, one needs to use
#' a subset of the columns when generating new rows through `rows_add()`.
#'
#' ```r
#' dplyr::tibble(
#'   msrp = numeric(0L),
#'   item = character(0L),
#'   type = character(0L)
#' ) |>
#'   gt() |>
#'   rows_add(
#'     msrp = c(29.95, 49.95, 79.95, 14.95),
#'     item = c("Klax", "Rez", "Ys", "D"),
#'     type = c("A", "B", "X", "Z")
#'   ) |>
#'   cols_add(
#'     genre = c("puzzle", "action", "RPG", "adventure")
#'   ) |>
#'   fmt_currency() |>
#'   cols_move_to_end(columns = msrp)
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_rows_add_8.png")`
#' }}
#'
#' @family row addition/modification functions
#' @section Function ID:
#' 6-4
#'
#' @section Function Introduced:
#' `v0.10.0` (October 7, 2023)
#'
#' @export
rows_add <- function(
    .data,
    ...,
    .list = list2(...),
    .before = NULL,
    .after = NULL,
    .n_empty = NULL
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = .data)

  # Collect a list of new row data
  row_data_list <- .list

  # Return data unchanged if `row_data_list` is empty and `.n_empty` is NULL
  if (length(row_data_list) < 1 && is.null(.n_empty)) {
    return(.data)
  }

  # Get the internal dataset and a vector of its column names
  data_tbl <- dt_data_get(data = .data)
  data_tbl_columns <- colnames(data_tbl)

  #
  # Special case where data table has no columns (and no rows); here, we allow
  # for one or more rows to be added with an arbitrary number of columns
  #

  if (nrow(data_tbl) < 1 && length(data_tbl_columns) < 1) {

    .data <- cols_add(.data = .data, ...)

    return(.data)
  }

  if (!is.null(.n_empty)) {

    # Ensure that `.n_empty` is an integer if anything is provided `.n_empty` is not negative
    check_number_whole(.n_empty, min = 0)

    # If the `.n_empty` should evaluate to `0` return the data unchanged
    if (as.integer(.n_empty) == 0L) {
      return(.data)
    }

    # Generate empty rows with `NA` values
    row_data_list <-
      lapply(
        seq_along(colnames(data_tbl)),
        FUN = function(x) rep(NA, .n_empty)
      )
    names(row_data_list) <- colnames(data_tbl)

  } else {

    #
    # Take two-sided formula inputs and normalize to name-value pairs
    #

    normalized_row_data_items <- list()
    row_data_items_to_remove <- NULL # c()

    for (i in seq_along(row_data_list)) {

      if (!(rlang::is_formula(row_data_list[[i]]))) {
        next
      }

      row_data_items_to_remove <- c(row_data_items_to_remove, i)

      # Obtain the LHS and RHS of the formula
      lhs <- rlang::f_lhs(row_data_list[[i]])
      rhs <- rlang::eval_tidy(rlang::f_rhs(row_data_list[[i]]))

      # Stop function if LHS of formula isn't present
      if (is.null(lhs)) {
        cli::cli_abort("If using a formula, it must be two-sided.")
      }

      resolved_columns <-
        resolve_cols_c(
          expr = {{ lhs }},
          data = .data,
          excl_stub = FALSE,
          excl_group = FALSE
        )

      # If nothing is resolved, go to next iteration
      if (length(resolved_columns) < 1) {
        next
      }

      # Generate normalized rows with `rhs` values
      row_data_list_i <-
        lapply(
          seq_along(resolved_columns),
          FUN = function(x) rhs
        )
      names(row_data_list_i) <- resolved_columns

      normalized_row_data_items <-
        c(
          normalized_row_data_items,
          row_data_list_i
        )
    }

    # Remove items from `row_data_list`
    if (length(row_data_items_to_remove) > 0) {
      row_data_list <- row_data_list[-row_data_items_to_remove]
    }

    # Add in items from `normalized_row_data_items`
    if (length(normalized_row_data_items) > 0) {
      row_data_list <- c(row_data_list, normalized_row_data_items)
    }

    # Ensure that the column names resolved belong to the internal
    # data table of `data_tbl`
    if (!all(names(row_data_list) %in% colnames(data_tbl))) {
      cols_not_found <- setdiff(names(row_data_list), colnames(data_tbl))
      cli::cli_abort(c(
        "All column names referenced must be present in the data.",
        "x" = "Can't find columns {.val {cols_not_found}}."))
    }
  }

  resolved_rows_before_idx <-
    resolve_rows_i(
      expr = {{ .before }},
      data = .data,
      null_means = "nothing"
    )

  if (
    !is.null(resolved_rows_before_idx) &&
    length(resolved_rows_before_idx) != 1
  ) {

    if (length(resolved_rows_before_idx) < 1) {
      cli::cli_abort("The expression used for `.before` did not resolve a row.")
    }

    if (length(resolved_rows_before_idx) > 1) {
      cli::cli_abort("The expression used for `.before` resolved multiple rows.")
    }
  }

  resolved_rows_after_idx <-
    resolve_rows_i(
      expr = {{ .after }},
      data = .data,
      null_means = "nothing"
    )

  if (
    !is.null(resolved_rows_after_idx) &&
    length(resolved_rows_after_idx) != 1
  ) {

    if (length(resolved_rows_after_idx) < 1) {
      cli::cli_abort("The expression used for `.after` did not resolve a row.")
    }

    if (length(resolved_rows_after_idx) > 1) {
      cli::cli_abort("The expression used for `.after` resolved multiple rows.")
    }
  }

  # Stop function if expressions are given to both `.before` and `.after`
  if (!is.null(resolved_rows_before_idx) && !is.null(resolved_rows_after_idx)) {
    cli::cli_abort("Only one of `.before` and `.after` can be supplied.")
  }

  #
  # Special case where all components of `row_data_list` are empty (have
  # zero length); in this case we need to return the data unchanged
  #

  row_data_list_empty <-
    all(
      vapply(
        seq_along(row_data_list),
        FUN.VALUE = logical(1),
        USE.NAMES = FALSE,
        FUN = function(x) {
          length(row_data_list[[x]]) < 1
        }
      )
    )

  if (row_data_list_empty) {
    return(.data)
  }

  dt_data_add_rows(
    data = .data,
    row_data_list = row_data_list,
    before = resolved_rows_before_idx,
    after = resolved_rows_after_idx
  )
}
rstudio/gt documentation built on Nov. 2, 2024, 5:53 p.m.