## @knitr models
# devtools::load_all("/mnt/GREENWOOD_BACKUP/home/sahir.bhatnagar/sail/sail_lambda_branch/")
######With raw data
make_data_split <- function(phenoVariable , exposure , n_train_test ) {
PRS <- grep("PRS", colnames(DT), value=T)
fmla <- reformulate(c(sapply(PRS, function(i) sprintf("bs(%s,3)",i))
), intercept = FALSE)
#Code if we want to normalize the data for values that are not on a similar scale
#Xnorm <- sail:::standardize(X, center = TRUE, normalize = TRUE)$x
model_mat <- model.matrix(fmla, data = as.data.frame(X))
#We group together the columns that have been separated into spline components corresponding to the same PRS variable
group = attr(model_mat, "assign")
E <- X[, "Tx_group_bin"]
new_model(name = "IQ4y_data_split_Cond2",
label = sprintf("traintest = %s, pheno = %s, exposure = %s",
n_train_test, phenoVariable, exposure),
params = list(
phenoVariable = phenoVariable,
exposure = exposure,
E = E,
Y = Y,
X = X,
model_mat = model_mat,
group = group,
n_train_test = n_train_test),
simulate = function( phenoVariable, exposure, E, Y, X, model_mat, group, n_train_test, nsim) {
models <- list()
for(i in seq(nsim)) {
#need to do it seperately, because for sail we need to normalize externally
dat_lasso <- partition_data(x = X[,-which(colnames(X) %in% c("Tx_group_bin","IQ_4yrs"))],
y = X[,"IQ_4yrs"], e = X[,"Tx_group_bin"], p = n_train_test/length(Y),
partition_on = X[, "Tx_group_bin"], type = "train_test_val")
dat <- partition_data(x = X[,-which(colnames(X) %in% c("Tx_group_bin","IQ_4yrs"))], y = X[,"IQ_4yrs"], e = X[,"Tx_group_bin"], p = n_train_test/length(Y),
partition_on = X[,"Tx_group_bin"], type = "train_test_val")
xtrain <- dat[["xtrain"]]
xtest <- dat[["xtest"]]
xvalid <- dat[["xvalid"]]
xtrain_lasso <- dat_lasso[["xtrain_lasso"]]
xtest_lasso <- dat_lasso[["xtest_lasso"]]
xvalid_lasso <- dat_lasso[["xvalid_lasso"]]
etrain <- dat[["etrain"]]
etest <- dat[["etest"]]
evalid <- dat[["evalid"]]
etrain_lasso <- dat_lasso[["etrain"]]
etest_lasso <- dat_lasso[["etest"]]
evalid_lasso <- dat_lasso[["evalid"]]
ytrain <- dat[["ytrain"]]
ytest <- dat[["ytest"]]
yvalid <- dat[["yvalid"]]
ytrain_lasso <- dat_lasso[["ytrain"]]
ytest_lasso <- dat_lasso[["ytest"]]
yvalid_lasso <- dat_lasso[["yvalid"]]
# main <- colnames(DT$x)
# vnames <- c(main, "E", paste0(main,":E"))
# vnames_lasso <- c("E", main) # needs to be in this order for glinternet
models[[i]] <- list(xtrain = xtrain, xtrain_lasso = xtrain_lasso,
etrain = etrain, etrain_lasso = etrain_lasso,
ytrain = ytrain, ytrain_lasso = ytrain_lasso,
xtest = xtest, xtest_lasso = xtest_lasso,
etest = etest, etest_lasso = etest_lasso,
ytest = ytest, ytest_lasso = ytest_lasso,
xvalid = xvalid, xvalid_lasso = xvalid_lasso,
evalid = evalid, evalid_lasso = evalid_lasso,
yvalid = yvalid, yvalid_lasso = yvalid_lasso, group = group)
}
return(models)
})
}
partition_data <- function(x, y, e, p, partition_on, type = c("train_test_val", "train_test")) {
type <- match.arg(type)
if (type == "train_test_val") {
ex <- cbind(E = e, x)
train_test_ind <- caret::createDataPartition(partition_on, p = p)[[1]]
validate_ind <- seq(length(y))[-train_test_ind]
train_ind <- sample(train_test_ind, floor(length(train_test_ind)/2))
test_ind <- setdiff(train_test_ind, train_ind)
xtrain <- x[train_ind, , drop=FALSE]
xtest <- x[test_ind, , drop=FALSE]
xvalid <- x[validate_ind, , drop=FALSE]
xtrain_lasso <- ex[train_ind, , drop=FALSE]
xtest_lasso <- ex[test_ind, , drop=FALSE]
xvalid_lasso <- ex[validate_ind, , drop=FALSE]
etrain <- e[train_ind]
etest <- e[test_ind]
evalid <- e[validate_ind]
ytrain <- y[train_ind]
ytest <- y[test_ind]
yvalid <- y[validate_ind]
return(list(xtrain = xtrain, etrain = etrain, ytrain = ytrain, xtrain_lasso = xtrain_lasso,
xtest = xtest, etest = etest, ytest = ytest, xtest_lasso = xtest_lasso,
xvalid = xvalid, evalid = evalid, yvalid = yvalid, xvalid_lasso = xvalid_lasso,
train_ind = train_ind, test_ind = test_ind, validate_ind = validate_ind))
} else if (type == "train_test"){
ex <- cbind(E = e, x)
train_ind <- caret::createDataPartition(partition_on, p = p)[[1]]
xtrain <- x[train_ind, , drop=FALSE]
xtest <- x[-train_ind, , drop=FALSE]
xtrain_lasso <- ex[train_ind, , drop=FALSE]
xtest_lasso <- ex[-train_ind, , drop=FALSE]
etrain <- e[train_ind]
etest <- e[-train_ind]
ytrain <- y[train_ind]
ytest <- y[-train_ind]
return(list(xtrain = xtrain, etrain = etrain, ytrain = ytrain, xtrain_lasso = xtrain_lasso,
xtest = xtest, etest = etest, ytest = ytest, xtest_lasso = xtest_lasso,
train_ind = train_ind))
}
}
####################################################
#EXTRA - NOT USED
######With normalized data
make_data_splitN <- function(phenoVariable , exposure , n_train_test ) {
PRS <- grep("PRS", colnames(DT), value=T)
fmla <- reformulate(c(sapply(PRS, function(i) sprintf("bs(%s,3)",i))
), intercept = FALSE)
#We will normalize the datra since IQ is not on the same scale as the PRS scores #Amanda
Xnorm <- sail:::standardize(X, center = TRUE, normalize = TRUE)$x
model_mat <- model.matrix(fmla, data = as.data.frame(Xnorm))
#We group together the columns that have been separated into spline components corresponding to the same PRS variable
group = attr(model_mat, "assign")
E <- Xnorm[, "Tx_group_bin"]
new_model(name = "testm_E",
label = sprintf("traintest = %s, pheno = %s, exposure = %s",
n_train_test, phenoVariable, exposure),
params = list(Xnorm = Xnorm,
phenoVariable = phenoVariable,
exposure = exposure,
E = E,
Y = Y,
X = X,
model_mat = model_mat,
group = group,
n_train_test = n_train_test),
simulate = function(Xnorm, phenoVariable, exposure, E, Y, X, model_mat, group, n_train_test, nsim) {
models <- list()
for(i in seq(nsim)) {
#need to do it seperately, because for sail we need to normalize externally
dat_lasso <- partition_data(x = Xnorm[,-which(colnames(X) %in% c("Tx_group_bin","IQ_4yrs"))],
y = Xnorm[,"IQ_4yrs"], e = Xnorm[,"Tx_group_bin"], p = n_train_test/length(Y),
partition_on = Xnorm[, "Tx_group_bin"], type = "train_test_val")
dat <- partition_data(x = model_mat, y = Xnorm[,"IQ_4yrs"], e = Xnorm[,"Tx_group_bin"], p = n_train_test/length(Y),
partition_on = Xnorm[,"Tx_group_bin"], type = "train_test_val")
xtrain <- dat[["xtrain"]]
xtest <- dat[["xtest"]]
xvalid <- dat[["xvalid"]]
xtrain_lasso <- dat_lasso[["xtrain_lasso"]]
xtest_lasso <- dat_lasso[["xtest_lasso"]]
xvalid_lasso <- dat_lasso[["xvalid_lasso"]]
etrain <- dat[["etrain"]]
etest <- dat[["etest"]]
evalid <- dat[["evalid"]]
etrain_lasso <- dat_lasso[["etrain"]]
etest_lasso <- dat_lasso[["etest"]]
evalid_lasso <- dat_lasso[["evalid"]]
ytrain <- dat[["ytrain"]]
ytest <- dat[["ytest"]]
yvalid <- dat[["yvalid"]]
ytrain_lasso <- dat_lasso[["ytrain"]]
ytest_lasso <- dat_lasso[["ytest"]]
yvalid_lasso <- dat_lasso[["yvalid"]]
# main <- colnames(DT$x)
# vnames <- c(main, "E", paste0(main,":E"))
# vnames_lasso <- c("E", main) # needs to be in this order for glinternet
models[[i]] <- list(xtrain = xtrain, xtrain_lasso = xtrain_lasso,
etrain = etrain, etrain_lasso = etrain_lasso,
ytrain = ytrain, ytrain_lasso = ytrain_lasso,
xtest = xtest, xtest_lasso = xtest_lasso,
etest = etest, etest_lasso = etest_lasso,
ytest = ytest, ytest_lasso = ytest_lasso,
xvalid = xvalid, xvalid_lasso = xvalid_lasso,
evalid = evalid, evalid_lasso = evalid_lasso,
yvalid = yvalid, yvalid_lasso = yvalid_lasso, group = group)
}
return(models)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.