Description Usage Arguments References
Find a low-dimensional repersentation of the data by satisfying the sampled triplet constraints from the high-dimensional features.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | trimap(
cds,
preprocess_method = "PCA",
python_home = system("which python", intern = TRUE),
num_dims = NULL,
module_file = paste(system.file(package = "m3addon"), "trimap.py", sep = "/"),
n_dims = 2,
n_inliers = 10,
n_outliers = 5,
n_random = 5,
distance = c("euclidean", "manhattan", "angular", "hamming"),
lr = 1000,
n_iters = 400,
knn_tuple = NULL,
apply_pca_trimap = FALSE,
opt_method = c("dbd", "sd", "momentum"),
verbose = TRUE,
weight_adj = 500,
return_seq = FALSE
)
|
n_dims |
Number of dimensions of the embedding (default = 2) |
data |
input data samples (rows), features (columns) |
n_inliers: |
Number of inlier points for triplet constraints (default = 10) |
n_outliers: |
Number of outlier points for triplet constraints (default = 5) |
n_random: |
Number of random triplet constraints per point (default = 5) |
distance: |
Distance measure ('euclidean' (default), 'manhattan', 'angular', 'hamming') |
lr: |
Learning rate (default = 1000.0) |
n_iters: |
Number of iterations (default = 400) |
knn_tuple: |
Use the pre-computed nearest-neighbors information in form of a tuple (knn_nbrs, knn_distances) (default = None) |
apply_pca: |
Apply PCA to reduce the dimensions to 100 if necessary before the nearest-neighbor calculation (default = True) |
opt_method: |
Optimization method ('sd': steepest descent, 'momentum': GD with momentum, 'dbd': GD with momentum delta-bar-delta (default)) |
verbose: |
Print the progress report (default = True) |
weight_adj: |
Adjusting the weights using a non-linear transformation (default = 500.0) |
return_seq: |
Return the sequence of maps recorded every 10 iterations (default = False) |
TriMap: Large-scale Dimensionality Reduction Using Triplets. E Amid, MK Warmuth - arXiv preprint arXiv:1910.00204, 2019 - arxiv.org
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.