suppressMessages(library(mlr3))
suppressMessages(library(mlr3tuning))
suppressMessages(library(mlrintermbo))
suppressMessages(library(mlr3learners))
suppressMessages(library(mlr3extralearners))
suppressMessages(library(mlr3oml))
suppressMessages(library(mlr3pipelines))
library(R6)
source("classifCompboost.R")
robustify = po("removeconstants", id = "removeconstants_before") %>>%
po("imputemedian", id = "imputemedian_num", affect_columns = selector_type(c("integer", "numeric"))) %>>%
po("imputemode", id = "imputemode_fct", affect_columns = selector_type(c("character", "factor", "ordered"))) %>>%
po("collapsefactors", target_level_count = 10) %>>%
po("removeconstants", id = "removeconstants_after")
tasks = list(tsk("oml", task_id = 7592L), tsk("oml", task_id = 168335L))
#source("../load-albert.R")
#task = ts_file
# CWB:
lrn01 = lrn("classif.compboost", mstop = 2000, optimizer = "cod", ncores = parallel::detectCores(),
df = 5, df_cat = 5, predict_type = "prob")
lrn02 = lrn("classif.compboost", mstop = 2000, optimizer = "cod", ncores = parallel::detectCores(),
bin_root = 2L, bin_method = "quantile", df = 5, df_cat = 5, predict_type = "prob")
lrn03 = lrn("classif.compboost", mstop = 2000, optimizer = "cod", ncores = parallel::detectCores(),
bin_root = 1.5, bin_method = "quantile", df = 5, df_cat = 5, predict_type = "prob")
lrn04 = lrn("classif.compboost", mstop = 2000, optimizer = "cod", ncores = parallel::detectCores(),
bin_root = 2L, bin_method = "linear", df = 5, df_cat = 5, predict_type = "prob")
lrn05 = lrn("classif.compboost", mstop = 2000, optimizer = "cod", ncores = parallel::detectCores(),
bin_root = 1.5, bin_method = "linear", df = 5, df_cat = 5, predict_type = "prob")
# hCWB:
lrn11 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
df = 5, df_cat = 5, predict_type = "prob")
lrn12 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 2L, bin_method = "quantile", df = 5, df_cat = 5, predict_type = "prob")
lrn13 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 1.5, bin_method = "quantile", df = 5, df_cat = 5, predict_type = "prob")
lrn14 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 2L, bin_method = "linear", df = 5, df_cat = 5, predict_type = "prob")
lrn15 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 1.5, bin_method = "linear", df = 5, df_cat = 5, predict_type = "prob")
# ACWB:
lrn21 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
df = 5, df_cat = 5, restart = FALSE, predict_type = "prob")
lrn22 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 2L, bin_method = "quantile", df = 5, df_cat = 5, restart = FALSE, predict_type = "prob")
lrn23 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 1.5, bin_method = "quantile", df = 5, df_cat = 5, restart = FALSE, predict_type = "prob")
lrn24 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 2L, bin_method = "linear", df = 5, df_cat = 5, restart = FALSE, predict_type = "prob")
lrn25 = lrn("classif.compboost", mstop = 2000, optimizer = "nesterov", ncores = parallel::detectCores(),
bin_root = 1.5, bin_method = "linear", df = 5, df_cat = 5, restart = FALSE, predict_type = "prob")
lrns = list(lrn01, lrn02, lrn03, lrn04, lrn05, lrn11, lrn12, lrn13, lrn14, lrn15, lrn21, lrn22, lrn23, lrn24, lrn25)
bmr = benchmark(benchmark_grid(
tasks = tasks,
learners = lapply(lrns, function (l) robustify %>>% l),
resamplings = rsmp("cv", folds = 3)))
sink("bmr-res-out.txt")
a = bmr$aggregate(msrs(c("classif.auc", "time_train")))
bmr$score(msrs(c("classif.auc", "time_train")))
sink()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.