An object to specify MCMC options for a later simulation
thinA one length numeric to specify thinning. A value of n indicates that every nth sample should be saved. Thinning helps to reduce autocorrelation.
iterA one length numeric to specify how many MCMC iterations should be sampled.
burninA one length numeric to specify burnin. The first $n$ samples will be discarded.
nstartsA one length numeric to specify the number of chains in a simulation.
param_updatesIndicates whether each parameter should be updated (1) or fixed (0).
min_GRminimum value of multivariate Gelman Rubin statistic for diagnosing convergence. Default is 1.2.
min_effsizethe minimum mean effective size of the chains. Default is 1/3 * iter.
max_burninThe maximum number of burnin iterations before we give up and return the existing model.
min_chainsminimum number of independence MCMC chains used for assessing convergence. Default is 3.
1 2 3 4 | McmcParams()
McmcParams(iter=1000)
mp <- McmcParams()
iter(mp)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.