#' Function to compute marginal effects at means in ERGM
#' If var2 and inter are left NULL, the function returns the marginal effect for var 1.
#' if var2 and inter are specified, function conducts tests of second differences to assess significance of an interaction
#'
#' @param model is an ergm object
#' @param var1 is the name of the main effect, character string
#' @param var2 is the name of the moderator, character string
#' @param inter is the name of the interaction, character string
#' @param at.2 is a vector specifying the levels of var2 at which to compute the marginal effects. If left NULL, it computes the MEM at all unique values of var2. Default is NULL.
#If the moderator is binary or specified at only 2 levels,
#the output object is a 2 dimensional list with one matrix of
#marginal effects and another of the second differences
#If the moderator is continuous and specified at 3 or more levels,
#the output object contains a 3 dimensional list, where the Aggregate output is the
#average second difference and t tests based on the average second difference,
#the second differnece matrix is the matrix of second differneces between
#all adjacent levels of var 2, and the marginal matrix is the matrix of marginal effects
#standard errors are computed using the delta method.
ergm.MEM<-function(model,
var1,
var2=NULL,
inter=NULL,
at.2=NULL,
at.controls=NULL,
control_vals=NULL,
return.dydx=FALSE){
##get edge probabilities
dyad.mat<-edge.prob2(model)[,-c(1)]
dyad.full.mat<-dyad.mat
start.drops<-ncol(dyad.mat)-5
dyad.mat<-dyad.mat[,-c(start.drops:ncol(dyad.mat))]
if(class(model)%in%"mtergm"|class(model)%in%"btergm"){
vc <- stats::vcov(model@ergm)
vc<-vc[!rownames(vc)%in%"edgecov.offsmat",!colnames(vc)%in%"edgecov.offsmat"]
}else{
vc <- stats::vcov(model)
}
if(class(model)%in%"mlergm"){
theta<-model$theta
vc<-solve(vc)
}else{
theta<-btergm::coef(model)
}
#handle mlergm objects
if("mlergm"%in%class(model)){
class(model)<-"ergm"
}
##handle curved ergms by removing decay parameter
#note that the micro-level change statistics are already properly weighted,
#so decay term is not needed for predictions
##handle decay term in curved ergms
if(class(model)%in%"mtergm" | class(model)%in%"btergm"){
if(ergm::is.curved(model@ergm)){
curved.term<-vector(length=length(model$etamap$curved))
for(i in 1:length(model$etamap$curved)){
curved.term[i]<-model$etamap$curved[[i]]$from[2]
}
theta<-theta[-c(curved.term)]
}
}else{
if(ergm::is.curved(model)){
curved.term<-vector(length=length(model$etamap$curved))
for(i in 1:length(model$etamap$curved)){
curved.term[i]<-model$etamap$curved[[i]]$from[2]
}
theta<-theta[-c(curved.term)]
}
}
if(any(names(theta)!=colnames(dyad.mat))){
colnames(dyad.mat)<-names(theta) #make sure names align
}
###incorporate control vals
if(!is.null(at.controls)){
if(is.null(control_vals)){
stop("control_vals must be specified to use at.controls argument.")
}
if(length(at.controls)==1){
dyad.mat[,at.controls]<-control_vals
}else{
for(i in 1:length(at.controls)){
dyad.mat[,at.controls][,i]<-control_vals[i]
}
}
}
#create marginal effects
dyad.means<-colMeans(dyad.mat,na.rm=TRUE)
p<-1/(1+exp(-dyad.means%*%theta))
##identify unique values of at.2--not used if var2==NULL
if(is.null(at.2)){
at.2<-sort(unique(dyad.mat[,var2]))
}
##marginal effects with no interaction
if(is.null(var2)){
MEM.fun<-function(theta){
ME.ergm<-sapply(names(theta),function(x)
(p*(1-p)*theta[var1]))
mean(ME.ergm,na.rm = TRUE)}
MEM<-MEM.fun(theta)
Jac<-numDeriv::jacobian(MEM.fun,theta)
variance.mem<-Jac%*%vc%*%t(Jac)
MEM.se<-sqrt(variance.mem)
MEM.z<-MEM/MEM.se
P.MEM<-2*(stats::pnorm(-abs(MEM.z)))
MEM<-matrix(c(MEM,MEM.se,MEM.z,P.MEM),nrow=1,ncol=4)
colnames(MEM)<-c("MEM","Delta SE","Z","P")
rownames(MEM)<-var1
MEM<-signif(MEM,digits=5)
if(return.dydx==TRUE){
MEM<-list(MEM,Jac)
names(MEM)<-c("MEM","Jac")
}
return(MEM)
}else{
##marginal effects for interaction that does not vary with covariates
if(!is.na(pmatch("nodematch",inter))){
if(!is.na(pmatch("nodecov",var1)) | !is.na(pmatch("nodeicov",var1)) |
!is.na(pmatch("nodeocov",var1))){ ##matched nodal characteristics are not a product term, so compute marginal effects
#for var 1 and var 2, then use results to compute marignal effect for interaction
MEM.fun<-function(theta){
ME.ergm<-sapply(names(theta),function(x)
(p*(1-p)*theta[var1]))
mean(ME.ergm,na.rm = TRUE)}
MEM1<-MEM.fun(theta)
Jac<-numDeriv::jacobian(MEM.fun,theta)
variance.ame1<-Jac%*%vc%*%t(Jac)
MEM1.se<-sqrt(variance.ame1)
MEM1.z<-MEM1/MEM1.se
P.MEM1<-2*(stats::pnorm(-abs(MEM1.z)))
MEM.fun<-function(theta){
ME.ergm<-sapply(names(theta),function(x)
(p*(1-p)*theta[var2]))
mean(ME.ergm,na.rm = TRUE)}
MEM2<-MEM.fun(theta)
Jac<-numDeriv::jacobian(MEM.fun,theta)
variance.ame2<-Jac%*%vc%*%t(Jac)
MEM2.se<-sqrt(variance.ame2)
MEM2.z<-MEM2/MEM2.se
P.MEM2<-2*(stats::pnorm(-abs(MEM2.z)))
MEM<-matrix(c(MEM1,MEM1.se,MEM1.z,P.MEM1,
MEM2,MEM2.se,MEM2.z,P.MEM2),nrow=2,ncol=4,byrow=TRUE)
colnames(MEM)<-c("MEM","Delta SE","Z","P")
rownames(MEM)<-c(var1,var2)
marginal.matrix<-MEM
##compute marginal effect
MEM.fun<-function(theta){
ME.ergm<-sapply(names(theta),function(x)
(p*(1-p)*theta[inter]))
mean(ME.ergm,na.rm = TRUE)}
MEM<-MEM.fun(theta)
Jac<-numDeriv::jacobian(MEM.fun,theta)
variance.inter<-Jac%*%vc%*%t(Jac)
MEM.se<-sqrt(variance.inter)
MEM.z<-MEM/MEM.se
P.MEM<-2*(stats::pnorm(-abs(MEM.z)))
MEM<-matrix(c(MEM,MEM.se,MEM.z,P.MEM),nrow=1,ncol=4)
colnames(MEM)<-c("MEM","Delta SE","Z","P")
rownames(MEM)<-inter
message("NOTE: Nodematch is an interaction, but it is not a product of the main effects (e.g., inter!=var1*var2). Returning the simple MEM for the interaction. Consider respecifying ERGM using nodefactor for main effects or absdiff instead of nodematch to measure homophily.")
marginal.matrix<-signif(marginal.matrix,digits=5)
MEM<-signif(MEM,digits=5)
MEM<-list(MEM,marginal.matrix)
names(MEM)<-c("Marginal effect for nodematch","Marginal effects for nodal covariates")
if(return.dydx==TRUE){
MEM<-list(MEM,Jac)
names(MEM)<-c("MEM","Jac")
}
return(MEM)
}
}
#for undirected networks, binarize factor variables
if(!is.na(pmatch("nodefactor",var1))){
dyad.mat[,var1][which(dyad.mat[,var1]>=2)]<-1
}
if(!is.na(pmatch("nodefactor",var2))){
at.2<-c(0,1)
}
#check whether self interaction
if(var1==var2){
self.int<-TRUE
var2<-paste(var1,".mod",sep="")
dyad.means[var2]<-dyad.means[var1]
}else{
self.int<-FALSE
}
##marginal effects for interactions
marginal.matrix<-matrix(NA,nrow=length(at.2),ncol=5)
colnames(marginal.matrix)<-c("MEM","Delta SE","Z","P","N")
rownames(marginal.matrix)<-paste(var2,"==",at.2)
for(i in 1:nrow(marginal.matrix)){
dyad.submeans<-dyad.means
dyad.submeans[var2]<-at.2[i]
#marginal effects for absolute differences
if(!is.na(pmatch("absdiff",inter))){
dyad.submeans[inter]<-abs(dyad.submeans[var1]-dyad.submeans[var2])
if(self.int==TRUE){
dyad.submeans<-dyad.submeans[!names(dyad.submeans)%in%var2]
}
p<-1/(1+exp(-(dyad.submeans%*%theta)))
at.diffs<-abs(at.2[i]-dyad.submeans[var1])
MEM.fun<-function(theta){
ME.ergm<-sapply(names(theta),function(x)
(p*(1-p)*(theta[var1]+(theta[inter]*at.diffs))))
mean(ME.ergm,na.rm = TRUE)}
}else{
#marginal effects for product terms
dyad.submeans[inter]<-dyad.submeans[var1]*dyad.submeans[var2]
if(self.int==TRUE){
dyad.submeans<-dyad.submeans[!names(dyad.submeans)%in%var2]
}
p<-1/(1+exp(-(dyad.submeans%*%theta)))
MEM.fun<-function(theta){
ME.ergm<-sapply(names(theta),function(x)
(p*(1-p)*(theta[var1]+(theta[inter]*at.2[[i]]))))
mean(ME.ergm,na.rm = TRUE)}
}
MEM<-MEM.fun(theta)
Jac<-numDeriv::jacobian(MEM.fun,theta)
marginal.matrix[i,1]<-MEM
if(i==1){
Jac1<-matrix(Jac)
}else{
Jac1<-cbind(Jac1,matrix(Jac))}
}
variance.mem<-t(Jac1)%*%vc%*%Jac1
MEM.se<-sqrt(diag(variance.mem))
marginal.matrix[,2]<-MEM.se
marginal.matrix[,3]<-marginal.matrix[,1]/MEM.se
marginal.matrix[,4]<-2*(stats::pnorm(-abs(marginal.matrix[,3])))
marginal.matrix[,5]<-length(p)
if(length(at.2)==1){
MEM<-t(as.matrix(marginal.matrix[,-c(5)]))
rownames(MEM)<-rownames(marginal.matrix)
if(return.dydx==TRUE){
MEM<-list(MEM,Jac1)
names(MEM)<-c("MEM","Jac")
}
return(MEM)
}
second.diffs.mat<-as.matrix(diff(marginal.matrix)[,1:4])
if(length(at.2)==2){
second.diffs.mat<-t(second.diffs.mat)
}
for(j in 1:nrow(second.diffs.mat)){
k<-j+1
diff.se<-sqrt((marginal.matrix[j,2]^2)+(marginal.matrix[k,2]^2)-2*variance.mem[j,k])
df<-marginal.matrix[j,5]-length(theta)
z.DCR<-(second.diffs.mat[j,1])/diff.se
P.DCR<-2*stats::pnorm(-abs(z.DCR))
second.diffs.mat[j,2]<-diff.se
second.diffs.mat[j,3]<-z.DCR
second.diffs.mat[j,4]<-P.DCR
}
colnames(second.diffs.mat)<-c("Second diff","SE","Wald Z","P")
rownames(second.diffs.mat)<-paste(at.2[-c(length(at.2))],"to",at.2[-c(1)])
marginal.matrix<-signif(marginal.matrix,digits=5)
second.diffs.mat<-signif(second.diffs.mat,digits=5)
if(length(at.2)==2){
if(return.dydx==TRUE){
DCR<-list(second.diffs.mat,marginal.matrix[,-c(ncol(marginal.matrix))],Jac1)
names(DCR)<-c("Second differences","Marginal effects at means","Jac")
}else{
DCR<-list(second.diffs.mat,marginal.matrix[,-c(ncol(marginal.matrix))])
names(DCR)<-c("Second differences","Marginal effects at means")
}
return(DCR)
}else{
#use absolute t value in case of extreme negatives or positives
summary.output<-matrix(c(mean(second.diffs.mat[,1]),mean(abs(second.diffs.mat[,3])),NA),nrow=1,ncol=3)
colnames(summary.output)<-c("Mean Second diff.","Mean |Z|", "P")
summary.output[1,3]<-2*stats::pnorm(abs(summary.output[1,2]),lower.tail = FALSE)
summary.output<-signif(summary.output,digits=5)
if(return.dydx==TRUE){
DCR<-list(summary.output,second.diffs.mat,marginal.matrix[,-c(ncol(marginal.matrix))],Jac1)
names(DCR)<-c("Aggregate output","Second differences","Marginal effects at means","Jac")
}else{
DCR<-list(summary.output,second.diffs.mat,marginal.matrix[,-c(ncol(marginal.matrix))])
names(DCR)<-c("Aggregate output","Second differences","Marginal effects at means")
}
return(DCR)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.