plotDEheatmap2 <- function(con,groups,de=NULL,min.auc=NULL,min.specificity=NULL,min.precision=NULL,n.genes.per.cluster=10,additional.genes=NULL,labeled.gene.subset=NULL, expression.quantile=0.99,pal=colorRampPalette(c('dodgerblue1','grey95','indianred1'))(1024),ordering='-AUC',column.metadata=NULL,show.gene.clusters=TRUE, remove.duplicates=TRUE, column.metadata.colors=NULL, show.cluster.legend=TRUE, show_heatmap_legend=FALSE, border=TRUE, return.details=FALSE, row.label.font.size=10, order.clusters=FALSE, split=FALSE, split.gap=0, ...) {
if (!requireNamespace("ComplexHeatmap", quietly = TRUE)) {
stop("pheatmap package needs to be installed to use plotDEheatmap")
}
#
# groups=as.factor(typefc)
# de=sannot.de
# min.auc=0.75
# min.specificity=NULL
# min.precision=NULL
# n.genes.per.cluster=20
# additional.genes=NULL
# labeled.gene.subset=NULL
# expression.quantile=0.99
# pal=colorRampPalette(c('dodgerblue1','grey95','indianred1'))(1024)
# ordering='-AUC'
# column.metadata=NULL
# show.gene.clusters=TRUE
# remove.duplicates=TRUE
# column.metadata.colors=NULL
# show.cluster.legend=TRUE
# show_heatmap_legend=FALSE
# border=TRUE
# return.details=FALSE
# row.label.font.size=3
# order.clusters=FALSE
# split=FALSE
# split.gap=0
#
# show.gene.clusters=T
# column.metadata=list(samples=con$getDatasetPerCell())
# #column.metadata.colors = list(clusters=sannot.pal,samples=sample.pal)
if(is.null(de)) { # run DE
de <- con$getDifferentialGenes(groups=groups,append.auc=TRUE,z.threshold=0,upregulated.only=TRUE)
}
# drop empty results
de <- de[unlist(lapply(de,nrow))>0]
# drop results that are not in the factor levels
de <- de[names(de) %in% levels(groups)]
# order de list to match groups order
de <- de[order(match(names(de),levels(groups)))]
print(names(de))
# apply filters
if(!is.null(min.auc)) {
if(!is.null(de[[1]]$AUC)) {
de <- lapply(de,function(x) x %>% dplyr::filter(AUC>min.auc))
de <- de[unlist(lapply(de, nrow))>0]
} else {
warning("AUC column lacking in the DE results - recalculate with append.auc=TRUE")
}
}
if(!is.null(min.specificity)) {
if(!is.null(de[[1]]$Specificity)) {
de <- lapply(de,function(x) x %>% dplyr::filter(Specificity>min.specificity))
de <- de[unlist(lapply(de, nrow))>0]
} else {
warning("Specificity column lacking in the DE results - recalculate append.specificity.metrics=TRUE")
}
}
if(!is.null(min.precision)) {
if(!is.null(de[[1]]$Precision)) {
de <- lapply(de,function(x) x %>% dplyr::filter(Precision>min.precision))
de <- de[unlist(lapply(de, nrow))>0]
} else {
warning("Precision column lacking in the DE results - recalculate append.specificity.metrics=TRUE")
}
}
print('track')
#de <- lapply(de,function(x) x%>%arrange(-Precision)%>%head(n.genes.per.cluster))
if(n.genes.per.cluster==0) { # want to show only expliclty specified genes
if(is.null(additional.genes)) stop("if n.genes.per.cluster is 0, additional.genes must be specified")
additional.genes.only <- TRUE;
n.genes.per.cluster <- 30; # leave some genes to establish cluster association for the additional genes
} else {
additional.genes.only <- FALSE;
}
de <- lapply(de,function(x) x%>%dplyr::arrange(!!rlang::parse_expr(ordering))%>%head(n.genes.per.cluster))
de <- de[unlist(lapply(de, nrow))>0]
gns <- lapply(de,function(x) as.character(x$Gene)) %>% unlist
sn <- function(x) setNames(x,x)
expl <- lapply(de,function(d) do.call(rbind,lapply(sn(as.character(d$Gene)),function(gene) conos:::getGeneExpression(con,gene))))
# place additional genes
if(!is.null(additional.genes)) {
genes.to.add <- setdiff(additional.genes,unlist(lapply(expl,rownames)))
x <- setdiff(genes.to.add,conos:::getGenes(con)); if(length(x)>0) warning('the following genes are not found in the dataset: ',paste(x,collapse=' '))
age <- do.call(rbind,lapply(sn(genes.to.add),function(gene) conos:::getGeneExpression(con,gene)))
# for each gene, measure average correlation with genes of each cluster
acc <- do.call(rbind,lapply(expl,function(og) rowMeans(cor(t(age),t(og)),na.rm=T)))
acc <- acc[,apply(acc,2,function(x) any(is.finite(x))),drop=F]
acc.best <- na.omit(apply(acc,2,which.max))
for(i in 1:length(acc.best)) {
gn <- names(acc.best)[i];
expl[[acc.best[i]]] <- rbind(expl[[acc.best[i]]],age[gn,,drop=F])
}
if(additional.genes.only) { # leave only genes that were explictly specified
expl <- lapply(expl,function(d) d[rownames(d) %in% additional.genes,,drop=F])
expl <- expl[unlist(lapply(expl,nrow))>0]
}
}
exp <- do.call(rbind,expl)
# limit to cells that were participating in the de
exp <- na.omit(exp[,colnames(exp) %in% names(na.omit(groups))])
if(order.clusters) {
# group clusters based on expression similarity (of the genes shown)
xc <- do.call(cbind,tapply(1:ncol(exp),groups[colnames(exp)],function(ii) rowMeans(exp[,ii,drop=F])))
hc <- hclust(as.dist(2-cor(xc)),method='ward.D2')
groups <- factor(groups,levels=hc$labels[hc$order])
expl <- expl[levels(groups)]
# re-create exp (could just reorder it)
exp <- do.call(rbind,expl)
exp <- na.omit(exp[,colnames(exp) %in% names(na.omit(groups))])
}
# transform expression values
x <- t(apply(as.matrix(exp), 1, function(xp) {
qs <- quantile(xp,c(1-expression.quantile,expression.quantile))
xp[xp<qs[1]] <- qs[1]
xp[xp>qs[2]] <- qs[2]
xp-min(xp);
xpr <- diff(range(xp));
if(xpr>0) xp <- xp/xpr;
xp
}))
o <- order(groups[colnames(x)])
x=x[,o]
annot <- data.frame(clusters=groups[colnames(x)],row.names = colnames(x))
if(!is.null(column.metadata)) {
if(is.data.frame(column.metadata)) { # data frame
annot <- cbind(annot,column.metadata[colnames(x),])
} else if(is.list(column.metadata)) { # a list of factors
annot <- cbind(annot,data.frame(do.call(cbind.data.frame,lapply(column.metadata,'[',rownames(annot)))))
} else {
warning('column.metadata must be either a data.frame or a list of cell-named factors')
}
}
annot <- annot[,rev(1:ncol(annot)),drop=FALSE]
if(is.null(column.metadata.colors)) {
column.metadata.colors <- list();
} else {
if(!is.list(column.metadata.colors)) stop("column.metadata.colors must be a list in a format accepted by HeatmapAnnotation col argument")
# reorder pallete to match the ordering in groups
if(!is.null(column.metadata.colors[['clusters']])) {
if(!all(levels(groups) %in% names(column.metadata.colors[['clusters']]))) {
stop("column.metadata.colors[['clusters']] must be a named vector of colors containing all levels of the specified cell groups")
}
column.metadata.colors[['clusters']] <- column.metadata.colors[['clusters']][levels(groups)]
}
}
# make sure cluster colors are defined
if(is.null(column.metadata.colors[['clusters']])) {
uc <- unique(annot$clusters);
column.metadata.colors$clusters <- setNames(rainbow(length(uc)),uc)
}
tt <- unlist(lapply(expl,nrow));
rannot <- setNames(rep(names(tt),tt),unlist(lapply(expl,rownames)))
#names(rannot) <- rownames(x);
rannot <- rannot[!duplicated(names(rannot))]
rannot <- rannot[names(rannot) %in% rownames(x)]
rannot <- data.frame(clusters=factor(rannot,levels=names(expl)))
x=unique(x)
dim(rannot)
dim(annot)
dim(x)
if(remove.duplicates) { x <- x[!duplicated(rownames(x)),] }
# draw heatmap
ha <- ComplexHeatmap::HeatmapAnnotation(df=annot,border=border,col=column.metadata.colors,show_legend=show.cluster.legend)
if(show.gene.clusters) {
ra <- ComplexHeatmap::HeatmapAnnotation(df=rannot,which='row',show_annotation_name=FALSE, show_legend=FALSE, border=border,col=column.metadata.colors)
} else { ra <- NULL }
#ComplexHeatmap::Heatmap(x, col=pal, cluster_rows=FALSE, cluster_columns=FALSE, show_column_names=FALSE, top_annotation=ha , left_annotation=ra, column_split=groups[colnames(x)], row_split=rannot[,1], row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), border=T, ...);
if(split) {
ha <- ComplexHeatmap::Heatmap(x, name='expression', col=pal, cluster_rows=FALSE, cluster_columns=FALSE, show_row_names=is.null(labeled.gene.subset), show_column_names=FALSE, top_annotation=ha , left_annotation=ra, border=border, show_heatmap_legend=show_heatmap_legend, row_names_gp = grid::gpar(fontsize = row.label.font.size), column_split=groups[colnames(x)], row_split=rannot[,1], row_gap = unit(split.gap, "mm"), column_gap = unit(split.gap, "mm"), ...);
} else {
ha <- ComplexHeatmap::Heatmap(x, name='expression', col=pal, cluster_rows=FALSE, cluster_columns=FALSE, show_row_names=is.null(labeled.gene.subset), show_column_names=FALSE, top_annotation=ha , left_annotation=ra, border=border, show_heatmap_legend=show_heatmap_legend, row_names_gp = grid::gpar(fontsize = row.label.font.size), ...);
#ha <- ComplexHeatmap::Heatmap(x, name='expression', col=pal, cluster_rows=FALSE, cluster_columns=FALSE, show_row_names=is.null(labeled.gene.subset), show_column_names=FALSE, top_annotation=ha , left_annotation=ra, border=border, show_heatmap_legend=show_heatmap_legend, row_names_gp = grid::gpar(fontsize = row.label.font.size));
}
if(!is.null(labeled.gene.subset)) {
if(is.numeric(labeled.gene.subset)) {
# select top n genes to show
labeled.gene.subset <- unique(unlist(lapply(de,function(x) x$Gene[1:min(labeled.gene.subset,nrow(x))])))
}
gene.subset <- which(rownames(x) %in% labeled.gene.subset)
labels <- rownames(x)[gene.subset];
ha <- ha + ComplexHeatmap::rowAnnotation(link = ComplexHeatmap::anno_mark(at = gene.subset, labels = labels, labels_gp = grid::gpar(fontsize = row.label.font.size)))
}
if(return.details) {
return(list(ha=ha,x=x,annot=annot,rannot=rannot,expl=expl,pal=pal,labeled.gene.subset=labeled.gene.subset))
} else {
return(ha)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.