source("../spread/R/cascades3D.R")
source("../spread/R/tools.R")
source("../spread/R/ABC_analyse.R")
args=commandArgs(trailingOnly = TRUE) #pass number of slave by comand line, should be #node - 1 as one node is used by the master
ns=args[1]#first argument is the number of slave
mainfold=args[2] #second argument = mainfolder to store the results
if(is.na(mainfold) | mainfold=="") mainfold="simulations"
print(paste0("Abc will be stored in mainfolder:",mainfold))
dir.create(mainfold)
library(Rmpi)
mpi.spawn.Rslaves(nslaves=ns)
mpi.bcast.cmd( id <- mpi.comm.rank() )
mpi.bcast.cmd( ns <- mpi.comm.size() )
mpi.bcast.cmd( host <- mpi.get.processor.name() )
mpi.bcast.cmd(source("../spread/R/cascades3D.R"))
mpi.bcast.cmd(source("../spread/R/tools.R"))
mpi.bcast.cmd(source("../spread/R/ABC_analyse.R"))
mpi.bcast.cmd(mainfold)
#(N=200,R=5,betadistrib=rep(1,200),utility=seq(0,1,length.out=5),repetition=2,tl=500,IC=50,summary=T,Nmax=NULL,mu_c=0,mu_r=0,dtime=0)
### Define Prior Ranges ###
prior_N=c(500,10000)
prior_R=c(10,1000)
prior_beta=c(-100,-10,0,10,100)
prior_utility=c(-1,0,1)
prior_repetition=c(5,80)
prior_captl=c(100,1000)
prior_mu_c=c(0.00001,.1)
prior_IC=c(500,1000)
prior_Nmax=c(0.001,.1)
prior_dtime=c(1:5,-1)
prior_stime=c(1:5,-1)
### Define Constants and Settings ###
nsim=7680 #number of simulations
nsubfold=5
full=FALSE #Boolean to save or not the full simulations
load("observations.bin")
fi=0
for(ns in 1:nsubfold){
fold=file.path(mainfold,paste0(mainfold,fi))
while(file.exists(fold)){
fi=fi+1
fold=file.path(mainfold,paste0(mainfold,fi))
}
dir.create(fold)
if(full)dir.create(file.path(fold,"fullsim"))
### Create Parameter Space ###
parameters=list(
### Define Prior Ranges ###,
N=sample(prior_N[1]:prior_N[2],nsim,replace=T),
R=sample(prior_R[1]:prior_R[2],nsim,replace=T),
betaDistrib=generalPartition(nsim,length(prior_beta)),
#betaDistrib_k=runif(nsim,prior_betaDistrib_k[1],prior_betaDistrib_k[2]),
#betaDistrib_t=runif(nsim,prior_betaDistrib_t[1],prior_betaDistrib_t[2]),
#utility=runif(nsim),
#utility_b=runif(nsim,prior_utility_b[1],prior_utility_b[2]),
#utility_a=runif(nsim,prior_utility_a[1],prior_utility_a[2]),
utility=generalPartition(nsim,length(prior_utility)), #this will contain the percantage for each class of utility
repetition=sample(prior_repetition[1]:prior_repetition[2],nsim,replace=T),
captl=runif(nsim,prior_captl[1],prior_captl[2]),
mu_c=runif(nsim,prior_mu_c[1],prior_mu_c[2]),
IC=sample(prior_IC[1]:prior_IC[2],nsim,replace=T),
Nmax=runif(nsim,prior_Nmax[1],prior_Nmax[2]),
dtime=sample(prior_dtime,nsim,replace=T),
stime=sample(prior_stime,nsim,replace=T)
)
scores=mpi.applyLB(1:nsim,function(i,parameters,obs,fold,full){
print(sapply(parameters,function(p)p[i]))
start.time <- Sys.time()
rud=cascades3D(
log=F,
N=parameters$N[i],
R=parameters$R[i],
#betadistrib=rgamma(parameters$N[i],parameters$betaDistrib_k[i],parameters$betaDistrib_t[i]),
betadistrib={
b=rep(c(-100,-10,0,10,100),parameters$betaDistrib[i,]*parameters$N[i])
if(sum(table(b))<parameters$N[i]){##In cas of missing value we ad to ad more, should be made a function, cannot think rn
miss=parameters$N[i]-sum(table(b))
b=c(b,sample(c(-100,-10,0,10,100),miss,repl=T))
b
}
else b
}
,
#utility=rbeta(parameters$R[i],parameters$utility_a[i],parameters$utility_b[i]),
utility={
u=rep(c(-1,0,1),parameters$utility[i,]*parameters$R[i])
if(sum(table(u))<parameters$R[i]){ ##In cas of missing value we ad to ad more
miss=parameters$R[i]-sum(table(u))
u=c(u,sample(c(-1,0,1),miss,repl=T))
u
}
else u
},
time=parameters$repetition[i],
captl=parameters$captl[i],
mu_c=parameters$mu_c[i],
Nmax=parameters$Nmax[i],
dtime=parameters$dtime[i],
stime=parameters$stime[i]
)
end.time <- Sys.time()
time.taken <- end.time - start.time
print(time.taken)
#=getRumors(rud)
qc=c()
qc$size=quantilediff(rud$size , obs$allrsisze)
qc$breadth=quantilediff(rud$breadth , obs$allbreadth)
qc$depth=quantilediff(rud$depth , obs$alldepth+1)
kokc=c()
kokc$size=kokldiff(rud$size , obs$allrsisze)
kokc$breadth=kokldiff(rud$breadth , obs$allbreadth)
kokc$depth=kokldiff(rud$depth , obs$alldepth+1)
kokcrev=c()
kokcrev$size=kokldiff(obs$allrsisze , rud$size)
kokcrev$breadth=kokldiff(obs$allbreadth , rud$breadth )
kokcrev$depth=kokldiff(obs$alldepth+1,rud$depth)
kc=c()
kc$size=try(kldiff(rud$size , obs$allrsisze))
kc$breadth=try(kldiff(rud$breadth , obs$allbreadth))
kc$depth=try(kldiff(rud$depth , obs$alldepth+1))
kcrev=c()
kcrev$size=try(kldiff(obs$allrsisze , rud$size))
kcrev$breadth=try(kldiff(obs$allbreadth , rud$breadth ))
kcrev$depth=try(kldiff(obs$alldepth+1,rud$depth))
if(full){
rud=list(rd=rud,t=time.taken)
save(rud,file=file.path(fold,"fullsim",paste0("res_sim_",i,".bin")))
}
return(list(kc=kc,qc=qc,kokc=kokc,kcrev=kcrev,kokcrev=kokcrev))
},obs=observation,parameters=parameters,fold=fold,full=full)
save(parameters,file=file.path(fold,"parameters.bin"))
save(scores,file=file.path(fold,"scores.bin"))
}
mpi.close.Rslaves(dellog = T)
mpi.quit()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.