#' Fit and validate Maximum Entropy models
#'
#' @param data data.frame. Database with response (0,1) and predictors values.
#' @param response character. Column name with species absence-presence data (0,1).
#' @param predictors character. Vector with the column names of quantitative
#' predictor variables (i.e. continuous variables).
#' Usage predictors = c("aet", "cwd", "tmin")
#' @param predictors_f character. Vector with the column names of qualitative
#' predictor variables (i.e. ordinal or nominal variables type). Usage predictors_f = c("landform")
#' @param fit_formula formula. A formula object with response and predictor
#' variables. See maxnet.formula function from maxnet package.
#' Note that the variables used here must be consistent with those used in
#' response, predictors, and predictors_f arguments. Default NULL.
#' @param partition character. Column name with training and validation partition groups.
#' @param background data.frame. Database including only those rows with 0 values in the response column and the predictors variables. All
#' column names must be consistent with data. Default NULL
#' @param thr character. Threshold used to get binary suitability values (i.e. 0,1), needed for threshold-dependent performance metrics. More than one threshold type can be used. It is necessary to provide a vector for this argument. The following threshold criteria are available:
#' \itemize{
#' \item lpt: The highest threshold at which there is no omission.
#' \item equal_sens_spec: Threshold at which the sensitivity and specificity are equal.
#' \item max_sens_spec: Threshold at which the sum of the sensitivity and specificity is the highest (aka threshold that maximizes the TSS).
#' \item max_jaccard: The threshold at which the Jaccard index is the highest.
#' \item max_sorensen: The threshold at which the Sorensen index is highest.
#' \item max_fpb: The threshold at which FPB (F-measure on presence-background data) is highest.
#' \item sensitivity: Threshold based on a specified sensitivity value.
#' Usage thr = c('sensitivity', sens='0.6') or thr = c('sensitivity'). 'sens' refers to sensitivity value. If a sensitivity values is not specified the default used is 0.9.
#' }
#' If more than one threshold type is used they must be concatenated, e.g., thr=c('lpt', 'max_sens_spec', 'max_jaccard'), or thr=c('lpt', 'max_sens_spec', 'sensitivity', sens='0.8'), or thr=c('lpt', 'max_sens_spec', 'sensitivity'). Function will use all thresholds if no threshold is specified.
#'
#' @param clamp logical. If TRUE, predictors and features are restricted to the range seen during model training.
#' @param classes character. A single feature of any combinations of them. Features are symbolized by letters: l (linear), q (quadratic), h (hinge), p (product), and t (threshold). Usage classes = "lpq". Default "default" (see details).
#' @param pred_type character. Type of response required available "link", "exponential", "cloglog" and "logistic". Default "cloglog"
#' @param regmult numeric. A constant to adjust regularization. Default 1.
#'
#' @return
#'
#' A list object with:
#' \itemize{
#' \item model: A "maxnet" class object from maxnet package. This object can be used for predicting.
#' \item predictors: A tibble with quantitative (c column names) and qualitative (f column names) variables use for modeling.
#' \item performance: Performance metrics (see \code{\link{sdm_eval}}).
#' Threshold dependent metrics are calculated based on the threshold specified in thr argument.
#' \item data_ens: Predicted suitability for each test partition based on the best model. This database is used in \code{\link{fit_ensemble}}
#' }
#' @details
#' When the argument “classes” is set as default MaxEnt will use different features combination
#' depending of the number of presences (np) with the follow rule:
#' if np < 10 classes = "l",
#' if np between 10 and 15 classes = "lq",
#' if np between 15 and 80 classes = "lqh",
#' and if np >= 80 classes = "lqph"
#'
#' When presence-absence (or presence-pseudo-absence) data are used in data argument
#' in addition to background points, the function will fit models with presences and background
#' points and validate with presences and absences. This procedure makes maxent comparable to other
#' presences-absences models (e.g., random forest, support vector machine). If only presences and
#' background points data are used, function will fit and validate model with presences and
#' background data. If only presence-absences are used in data argument and without background,
#' function will fit model with the specified data (not recommended).
#'
#' @seealso \code{\link{fit_gam}}, \code{\link{fit_gau}}, \code{\link{fit_gbm}},
#' \code{\link{fit_glm}}, \code{\link{fit_net}}, \code{\link{fit_raf}}, and \code{\link{fit_svm}}.
#'
#' @export
#'
#' @importFrom dplyr %>% select starts_with filter pull bind_rows group_by summarise across everything all_of
#' @importFrom maxnet maxnet maxnet.formula
#' @importFrom stats sd
#'
#' @examples
#' \dontrun{
#' data("abies")
#' data("backg")
#' abies # environmental conditions of presence-absence data
#' backg # environmental conditions of background points
#'
#' # Using k-fold partition method
#' # Note that the partition method, number of folds or replications must
#' # be the same for presence-absence and background points datasets
#' abies2 <- part_random(
#' data = abies,
#' pr_ab = "pr_ab",
#' method = c(method = "kfold", folds = 5)
#' )
#' abies2
#'
#' backg2 <- part_random(
#' data = backg,
#' pr_ab = "pr_ab",
#' method = c(method = "kfold", folds = 5)
#' )
#' backg2
#'
#' max_t1 <- fit_max(
#' data = abies2,
#' response = "pr_ab",
#' predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
#' predictors_f = c("landform"),
#' partition = ".part",
#' background = backg2,
#' thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen"),
#' clamp = TRUE,
#' classes = "default",
#' pred_type = "cloglog",
#' regmult = 1
#' )
#' length(max_t1)
#' max_t1$model
#' max_t1$predictors
#' max_t1$performance
#' max_t1$data_ens
#' }
fit_max <- function(data,
response,
predictors,
predictors_f = NULL,
fit_formula = NULL,
partition,
background = NULL,
thr = NULL,
clamp = TRUE,
classes = "default",
pred_type = "cloglog",
regmult = 1) {
. <- model <- TPR <- IMAE <- rnames <- thr_value <- n_presences <- n_absences <- NULL
variables <- dplyr::bind_rows(c(c = predictors, f = predictors_f))
# Test response variable
r_test <- (data %>% dplyr::pull(response) %>% unique() %>% na.omit())
if ((!all(r_test %in% c(0, 1)))) {
stop("values of response variable do not match with 0 and 1")
}
data <- data.frame(data)
if (!is.null(background)) background <- data.frame(background)
if (is.null(predictors_f)) {
data <- data %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::starts_with(partition))
if (!is.null(background)) {
background <- background %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::starts_with(partition))
}
} else {
data <- data %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::all_of(predictors_f), dplyr::starts_with(partition))
data <- data.frame(data)
for (i in predictors_f) {
data[, i] <- as.factor(data[, i])
}
if (!is.null(background)) {
background <- background %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::all_of(predictors_f), dplyr::starts_with(partition))
for (i in predictors_f) {
background[, i] <- as.factor(background[, i])
}
}
}
if (!is.null(background)) {
if (!all(table(c(names(background), names(data))) == 2)) {
print(table(c(names(background), names(data))))
stop("Column names of database used in 'data' and 'background' arguments do not match")
}
}
# Remove NAs
complete_vec <- stats::complete.cases(data[, c(response, unlist(variables))])
if (sum(!complete_vec) > 0) {
message(sum(!complete_vec), " rows were excluded from database because NAs were found")
data <- data %>% dplyr::filter(complete_vec)
}
rm(complete_vec)
if (!is.null(background)) {
complete_vec <- stats::complete.cases(background[, c(response, unlist(variables))])
if (sum(!complete_vec) > 0) {
message(sum(!complete_vec), " rows were excluded from database because NAs were found")
background <- background %>% dplyr::filter(complete_vec)
}
rm(complete_vec)
}
# New predictors vector
if (!is.null(predictors_f)) {
predictors <- c(predictors, predictors_f)
}
# Formula
if (is.null(fit_formula)) {
formula1 <- maxnet::maxnet.formula(data[response],
data[predictors],
classes = classes
)
} else {
formula1 <- fit_formula
}
message(
"Formula used for model fitting:\n",
Reduce(paste, deparse(formula1)) %>% gsub(paste(" ", " ", collapse = "|"), " ", .),
"\n"
)
# Compare pr_ab and background column names
p_names <- names(data %>% dplyr::select(dplyr::starts_with(partition)))
for (i in p_names) {
if (!is.null(background)) {
Npart_p <- data %>%
dplyr::filter(!!as.symbol(response) == 1) %>%
dplyr::pull({{ i }}) %>%
unique() %>%
sort()
Npart_bg <- background %>%
dplyr::filter(!!as.symbol(response) == 0) %>%
dplyr::pull({{ i }}) %>%
unique() %>%
sort()
if (!all(table(c(Npart_p, Npart_bg)) == 2)) {
stop(
paste(
"Partition groups between presences and background do not match:\n",
paste("Part. group presences:", paste(Npart_p, collapse = " "), "\n"),
paste("Part. group background:", paste(Npart_bg, collapse = " "), "\n")
)
)
}
}
}
rm(i)
# Fit models
np <- ncol(data %>% dplyr::select(dplyr::starts_with(partition)))
p_names <- names(data %>% dplyr::select(dplyr::starts_with(partition)))
eval_partial_list <- list()
pred_test_ens <- data %>%
dplyr::select(dplyr::starts_with(partition)) %>%
apply(., 2, unique) %>%
data.frame() %>%
as.list() %>%
lapply(., function(x) {
x <- stats::na.exclude(x)
x[!(x %in% c("train-test", "test"))] %>% as.list()
})
for (h in 1:np) {
message("Replica number: ", h, "/", np)
out <- pre_tr_te(data, p_names, h)
train <- out$train
test <- out$test
np2 <- out$np2
rm(out)
# In the follow code function will substitutes absences by background points
# only in train database in order to fit maxent with presences and background
# and validate models with presences and absences
if (!is.null(background)) {
background2 <- pre_tr_te(background, p_names, h)
train <- lapply(train, function(x) x[x[, response] == 1, ])
train <- mapply(dplyr::bind_rows, train, background2$train, SIMPLIFY = FALSE)
bgt_test <- background2$test
rm(background2)
}
eval_partial <- as.list(rep(NA, np2))
pred_test <- list()
mod <- list()
for (i in 1:np2) {
message("Partition number: ", i, "/", np2)
tryCatch({
sampleback <- TRUE
try(mod[[i]] <-
suppressMessages(
maxnet::maxnet(
p = train[[i]][, response],
data = train[[i]][predictors],
f = formula1,
regmult = regmult,
addsamplestobackground = sampleback
)
))
if (length(mod) < i) {
message("Refit with addsamplestobackground = FALSE")
sampleback <- FALSE
try(mod[[i]] <-
suppressMessages(
maxnet::maxnet(
p = train[[i]][, response],
data = train[[i]][predictors],
f = formula1,
regmult = regmult,
addsamplestobackground = sampleback
)
))
}
# Predict for presences absences data
## Eliminate factor levels not used in fitting
# if (!is.null(predictors_f)) {
# for (fi in 1:length(predictors_f)) {
# lev <- as.character(unique(mod[[i]]$levels[[predictors_f[fi]]]))
# lev_filt <- test[[i]][, predictors_f[fi]] %in% lev
# test[[i]] <- test[[i]][lev_filt, ]
# if (!is.null(background)) {
# lev_filt <- bgt_test[[i]][, predictors_f[fi]] %in% lev
# bgt_test[[i]] <- bgt_test[[i]][lev_filt, ]
# }
# }
# }
if (all(test[[i]][, response] == 1)) {
# Test based on presence and background
test[[i]] <- bind_rows(test[[i]], bgt_test[[i]])
}
pred_test <- data.frame(
pr_ab = test[[i]][, response],
pred = predict_maxnet(
object = mod[[i]],
newdata = test[[i]],
clamp = clamp,
type = pred_type
)
)
pred_test_ens[[h]][[i]] <- pred_test %>%
dplyr::mutate(rnames = rownames(test[[i]]))
# Predict for background data
if (!is.null(background)) {
bgt <-
data.frame(
pr_ab = bgt_test[[i]][, response],
pred =
predict_maxnet(
mod[[i]],
newdata = bgt_test[[i]][c(predictors, predictors_f)],
clamp = clamp,
type = pred_type,
addsamplestobackground = sampleback
)
)
}
# Validation of model
if (is.null(background)) {
eval <-
sdm_eval(
p = pred_test$pred[pred_test$pr_ab == 1],
a = pred_test$pred[pred_test$pr_ab == 0],
thr = thr
)
} else {
eval <-
sdm_eval(
p = pred_test$pred[pred_test$pr_ab == 1],
a = pred_test$pred[pred_test$pr_ab == 0],
thr = thr,
bg = bgt$pred
)
}
eval_partial[[i]] <- dplyr::tibble(model = "max", eval)
names(eval_partial) <- i
})
}
# Create final database with parameter performance
eval_partial <-
eval_partial[sapply(eval_partial, function(x) !is.null(dim(x)))] %>%
dplyr::bind_rows(., .id = "partition")
eval_partial_list[[h]] <- eval_partial
}
eval_partial <- eval_partial_list %>%
dplyr::bind_rows(., .id = "replica")
eval_final <- eval_partial %>%
dplyr::group_by(model, threshold) %>%
dplyr::summarise(dplyr::across(
TPR:IMAE,
list(mean = mean, sd = stats::sd)
), .groups = "drop")
# Bind data for ensemble
for (e in 1:length(pred_test_ens)) {
fitl <- sapply(pred_test_ens[[e]], function(x) !is.null(nrow(x)))
pred_test_ens[[e]] <- pred_test_ens[[e]][fitl]
}
pred_test_ens <-
lapply(pred_test_ens, function(x) {
bind_rows(x, .id = "part")
}) %>%
bind_rows(., .id = "replicates") %>%
dplyr::tibble() %>%
dplyr::relocate(rnames)
# Fit final models
if (all(data[, response] == 1)) {
data_2 <- bind_rows(data, background)
} else {
# remove absences
data_2 <- bind_rows(data[data[, response] == 1, ], background)
}
sampleback <- TRUE
mod <- NULL
try(suppressMessages(mod <-
maxnet::maxnet(
p = data_2[, response],
data = data_2[predictors],
f = formula1,
regmult = regmult,
addsamplestobackground = sampleback
)))
if (length(mod) < i) {
message("Refit with addsamplestobackground = FALSE")
sampleback <- FALSE
try(mod <-
suppressMessages(
maxnet::maxnet(
p = data[, response],
data = data[predictors],
f = formula1,
regmult = regmult,
addsamplestobackground = sampleback
)
))
}
if (all(data[, response] == 1)) {
# Test based on presence and background
data <- bind_rows(data, background)
}
pred_test <- data.frame(
"pr_ab" = data.frame(data)[, response],
"pred" = predict_maxnet(
mod,
newdata = data,
clamp = clamp,
type = pred_type
)
)
if (is.null(background)) {
threshold <- sdm_eval(
p = pred_test$pred[pred_test$pr_ab == 1],
a = pred_test$pred[pred_test$pr_ab == 0],
thr = thr
)
} else {
background <- predict_maxnet(
mod,
newdata = background[predictors],
clamp = clamp,
type = pred_type
)
threshold <- sdm_eval(
p = pred_test$pred[pred_test$pr_ab == 1],
a = pred_test$pred[pred_test$pr_ab == 0],
thr = thr,
bg = background
)
}
result <- list(
model = mod,
predictors = variables,
performance = dplyr::left_join(eval_final, threshold[1:4], by = "threshold") %>% dplyr::relocate(model, threshold, thr_value, n_presences, n_absences),
data_ens = pred_test_ens
)
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.