#' Spatial block cross-validation
#'
#' @description This function explores spatial blocks with different cell sizes and returns the
#' most suitable size for a given presence or presence-absence database. The selection of the best
#' grid size is performed automatically considering spatial autocorrelation, environmental
#' similarity, and the number of presence and absence records in each partition.
#'
#' @param env_layer SpatRaster. Raster with environmental
#' variable. Used to evaluate spatial autocorrelation and
#' environmental similarity between training and testing partitions. Because this function
#' calculate dissimilarity based on Euclidean distances, it can only be used with continuous
#' environmental variables
#' @param data data.frame. Data.frame or tibble object with presence
#' (or presence-absence, or presences-pseudo-absence) records, and coordinates
#' @param x character. Column name with spatial x coordinates
#' @param y character. Column name with spatial y coordinates
#' @param pr_ab character. Column with presence, presence-absence,
#' or pseudo-absence records. Presences must be represented by 1 and absences by 0
#' @param min_res_mult integer. Minimum value used for multiplying
#' raster resolution and define the finest resolution to be tested, default 3.
#' @param max_res_mult integer. Maximum value used for multiplying
#' raster resolution and define the coarsest resolution to be tested, default 200.
#' @param num_grids integer. Number of grid to be tested between
#' min_res_mult X (raster resolution) and max_res_mult X (raster resolution), default 30
#' @param n_part integer. Number of partition. Default 2.
#' @param min_occ numeric. Minimum number of presences or absences in a partition fold.
#' The min_occ value should be base on the amount of predictors in order to avoid over-fitting
#' or error when fitting models for a given fold. Default 10.
#' @param prop numeric. Proportion of point used for testing autocorrelation between
#' groups (values > 0 and <=1). The smaller this proportion is, the faster the function will work.
#' Default 0.5
#'
#' @return
#' A list with:
#' \itemize{
#' \item part: A tibble object with information used in 'data' arguments and a additional column
#' .part with partition group.
#' \item best_part_info: A tibble with information about the best partition. It contains the
#' number of the best partition (n_grid), cell size (cell_size), standard deviation of
#' presences (sd_p), standard deviation of absences (sd_a), Moran's I spatial autocorrelation
#' (spa_auto), and environmental similarity based on Euclidean distance (env_sim).
#' \item grid: A SpatRaster object with blocks
#' }
#'
#' @details The part_sblock allows test with different numbers of partitions using square blocks
#' (like a checkerboard). This function explores a range of block sizes and automatically selects
#' the best size for a given given presence, presence-absences, or presence-pseudo-absences
#' dataset. Number of partition selection is based on an optimization procedure that
#' explores partition size in three dimensions
#' determined by spatial autocorrelation (measured by Moran's I), environmental similarity
#' (Euclidean distance), and difference in the amount of data among partition groups
#' (Standard Deviation - SD; Velazco et al., 2019). This procedure will iteratively select partitions, first
#' those partitions with autocorrelation values less than the lowest quartile of Morans I, then
#' those with environmental similarity values greater than the third quartile of the Euclidean
#' distances than those with a difference in the amount of data less than the lowest quartile of SD.
#' This selection is repeated until only one partition is retained (Velazco et al., 2019). The
#' main benefit of this partition selection are that it i) is not subjective, ii) balances the
#' environmental similarity and special autocorrelation between partitions, and iii) controls
#' the selection of partitions with too few data that may be problematic for model fitting
#' ("min_occ" argument).
#'
#' Geographically structured partitions tend to evaluate model transferability more directly than
#' conventional ones (e.g., those performed by \code{\link{part_random}}) (Roberts et al., 2017;
#' Santini et al., 2021), and are relevant for models that are to be used for projections in other
#' regions outside the calibration area or for other time periods.
#'
#' This function can interact with \code{\link{get_block}}, \code{\link{sample_background}},
#' and \code{\link{sample_pseudoabs}} for sampling background points or pseudo-absences within
#' spatial partition broups
#'
#' @references
#' \itemize{
#' \item Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G.,
#' Hauenstein, S., Lahoz-Monfort, J. J., Schroder, B., Thuiller, W., Warton, D. I., Wintle, B. A.,
#' Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial,
#' hierarchical, or phylogenetic structure. Ecography, 40,
#' 913-929. https://doi.org/10.1111/ecog.02881
#' \item Santini, L., Benitez-Lopez, A., Maiorano, L., Cengic, M., & Huijbregts, M. A. J. (2021).
#' Assessing the reliability of species distribution projections in climate change research.
#' Diversity and Distributions, ddi.13252. https://doi.org/10.1111/ddi.13252
#' \item Velazco, S. J. E., Villalobos, F., Galvao, F., & De Marco Junior, P. (2019). A dark
#' scenario for Cerrado plant species: Effects of future climate, land use and protected areas
#' ineffectiveness. Diversity and Distributions, 25(4), 660-673. https://doi.org/10.1111/ddi.12886
#' }
#'
#' @export
#'
#' @importFrom dplyr tibble pull group_by slice_sample select
#' @importFrom stats complete.cases sd
#' @importFrom terra extract res ext vect crs extend values ncell cellFromXY geom
#' @importFrom utils combn
#'
#' @seealso \code{\link{part_random}}, \code{\link{part_sband}}, \code{\link{part_senv}},
#' \code{\link{get_block}}, and \code{\link{plot_res}}.
#'
#' @examples
#' \dontrun{
#' require(terra)
#' require(dplyr)
#'
#' # Load datasets
#' data(spp)
#' f <- system.file("external/somevar.tif", package = "flexsdm")
#' somevar <- terra::rast(f)
#'
#' # Example for one single species
#' single_spp <- spp %>% dplyr::filter(species == "sp3")
#' part <- part_sblock(
#' env_layer = somevar,
#' data = single_spp,
#' x = "x",
#' y = "y",
#' pr_ab = "pr_ab",
#' min_res_mult = 10,
#' max_res_mult = 500,
#' num_grids = 30,
#' n_part = 2,
#' min_occ = 5,
#' prop = 0.5
#' )
#' part
#'
#' part$part # database with partition fold (.part)
#' part$part %>%
#' group_by(pr_ab, .part) %>%
#' count() # number of presences and absences in each fold
#' part$best_part_info # information of the best partition
#' part$grid # raster with folds
#'
#' # Explore the Grid object
#'
#' plot(part$grid)
#' points(part$part[c("x", "y")],
#' col = c("blue", "red")[part$part$.part],
#' cex = 0.5,
#' pch = 19
#' )
#'
#' terra::res(part$grid)
#' terra::res(somevar)
#'
#' # Note that this is a layer with block partition, but it has a
#' # different resolution than the original environmental variables.
#' # If you wish have a layer with the same properties
#' # (i.e. resolution, extent, NAs) as your original environmental
#' # variables you can use the \code{\link{get_block}} function.
#'
#' grid_env <- get_block(env_layer = somevar, best_grid = part$grid)
#'
#' plot(grid_env) # this is a block layer with the same layer
#' # properties as environmental variables.
#' points(part$part[c("x", "y")],
#' col = c("blue", "red")[part$part$.part],
#' cex = 0.5,
#' pch = 19
#' )
#' # This layer is very useful if you need to sample
#' # pseudo_absence or background point
#' # See examples in \code{\link{backgroudp}} and \code{\link{pseudoabs}}
#'
#'
#' # Example of a higher number of partitions
#' part <- part_sblock(
#' env_layer = somevar,
#' data = single_spp,
#' x = "x",
#' y = "y",
#' pr_ab = "pr_ab",
#' min_res_mult = 10,
#' max_res_mult = 500,
#' num_grids = 30,
#' n_part = 4,
#' min_occ = 2,
#' prop = 0.5
#' )
#'
#' # Explore the Grid object
#' plot(part$grid, col = gray.colors(4))
#' points(part$part[c("x", "y")],
#' col = rainbow(n = 4)[part$part$.part],
#' cex = 0.5,
#' pch = 19
#' )
#'
#'
#' # Using these functions with several species
#' spp2 <- split(spp, spp$species)
#' class(spp2)
#' length(spp2)
#' names(spp2)
#'
#' part_list <- lapply(spp2, function(x) {
#' result <- part_sblock(
#' env_layer = somevar,
#' data = x,
#' x = "x",
#' y = "y",
#' pr_ab = "pr_ab",
#' min_res_mult = 10,
#' max_res_mult = 500,
#' num_grids = 30,
#' n_part = 2,
#' min_occ = 5,
#' prop = 0.5
#' )
#' result
#' })
#'
#' part_list$sp3 # For this dataset a suitable partition was not found
#'
#' # Create a single database for all species
#' occ_part <- lapply(part_list, function(x) {
#' if (!length(x) > 0) {
#' x[[1]]
#' }
#' }) %>%
#' dplyr::bind_rows(.id = "species")
#' occ_part
#'
#' # Get the best grid info for all species
#' grid_info <- dplyr::bind_rows(lapply(
#' part_list,
#' function(x) x[[2]]
#' ), .id = "species")
#'
#' # Get the best grid layer for all species
#' grid_layer <- lapply(part_list, function(x) x$grid)
#' grid_layer2 <-
#' lapply(grid_layer, function(x) {
#' get_block(env_layer = somevar[[1]], best_grid = x)
#' })
#' grid_layer2 <- terra::rast(grid_layer2)
#' grid_layer2
#' plot(grid_layer2)
#'
#'
#' # Block partition for presences-only database
#' single_spp <- spp %>%
#' dplyr::filter(species == "sp1", pr_ab == 1)
#' single_spp
#' single_spp$pr_ab %>% unique() # only presences
#'
#' part <- part_sblock(
#' env_layer = somevar,
#' data = single_spp,
#' x = "x",
#' y = "y",
#' pr_ab = "pr_ab",
#' min_res_mult = 10,
#' max_res_mult = 500,
#' num_grids = 30,
#' n_part = 4,
#' min_occ = 10,
#' prop = 0.5
#' )
#'
#' part$part %>% dim()
#' part$best_part_info
#' part$grid
#'
#' plot(part$grid)
#' points(
#' part$part[c("x", "y")],
#' col = c("blue", "red", "green", "black")[part$part$.part],
#' cex = 0.5,
#' #' pch = 19
#' )
#' }
#'
part_sblock <- function(env_layer,
data,
x,
y,
pr_ab,
n_part = 3,
min_res_mult = 3,
max_res_mult = 200,
num_grids = 30,
min_occ = 10,
prop = 0.5) {
# Select columns
data <- dplyr::tibble(data)
data <- data[, c(pr_ab, x, y)]
colnames(data) <- c("pr_ab", "x", "y")
if (any(!unique(data[, "pr_ab"][[1]]) %in% c(0, 1))) {
stop(
"values in pr_ab column did not match with 0 and 1:
unique list values in pr_ab column are: ",
paste(unique(data[, "pr_ab"]), collapse = " ")
)
}
# Extract data
data <- dplyr::tibble(data, terra::extract(env_layer, data[, 2:3])[-1])
filt <- stats::complete.cases(data)
if (sum(!filt) > 0) {
data <- data[filt, ]
message(sum(!filt), " rows were excluded from database because NAs were found")
}
rm(filt)
# Vector with presences and absences
pa <- data %>%
dplyr::pull(pr_ab)
# Vector with grid cell-size used
cell_size <- seq(terra::res(env_layer[[1]])[1] * min_res_mult,
terra::res(env_layer[[1]])[1] * max_res_mult,
length.out = num_grids
)
message(
"The following grid cell sizes will be tested:\n",
paste(round(cell_size, 2), collapse = " | "),
"\n"
)
# Mask
message("Creating basic raster mask...\n")
mask <- env_layer[[1]]
names(mask) <- "group"
mask[!is.na(mask)] <- 1
# Extent
e <- terra::ext(mask)
# Start Cluster
message("Searching for the optimal grid size...\n")
# Extract coordinates----
mask2 <- mask
mask2[] <- 0
presences2 <- data
# Transform the presences points in a DataFrameSpatialPoints
presences2 <- terra::vect(presences2, geom = c("x", "y"), crs = terra::crs(mask))
#### Data partitioning using a grid approach ####
# Create a list of grids based on different raster resolution
grid <- list() # List of grids
# raster resolution
DIM <-
matrix(0, length(cell_size), 2) # the number of rows and columns of each grid
colnames(DIM) <- c("R", "C")
for (i in 1:length(cell_size)) {
mask3 <- mask2
terra::res(mask3) <- cell_size[i]
mask3 <- terra::extend(mask3, y = c(1, 1))
DIM[i, ] <- dim(mask3)[1:2]
terra::values(mask3) <- 1 # Add values to cells /
NAS <-
c(terra::extract(mask3, presences2)[-1]) # Extract values to test if exist NAs
if (any(is.na(NAS))) {
while (any(is.na(NAS))) {
terra::ext(mask3) <- terra::ext(mask3) + cell_size[i]
terra::res(mask3) <- cell_size[i] # Give to cells a size
DIM[i, ] <- dim(mask3)[1:2]
terra::values(mask3) <- 1
NAS <- terra::extract(mask3, presences2)[-1]
}
}
grid[[i]] <- mask3
}
rm(list = c("mask3", "mask2", "mask"))
# In this section is assigned the group of each cell
for (i in 1:length(grid)) {
if (n_part %% 2 == 0) {
group <- c(
rep(1:n_part, DIM[i, 2])[1:DIM[i, 2]],
rep(c((n_part / 2 + 1):n_part, 1:(n_part / 2)), DIM[i, 2])[1:DIM[i, 2]]
)
}
if (n_part %% 2 == 1) {
group <- c(
rep(1:n_part, DIM[i, 2])[1:DIM[i, 2]],
rep(c(as.integer(n_part / 2 + 1):n_part, 1:(n_part / 2)), DIM[i, 2])[1:DIM[i, 2]]
)
}
terra::values(grid[[i]]) <- rep(group, length.out = terra::ncell(grid[[i]]))
}
# Matrix within each columns represent the partitions of points
# for each grid resolution
part <- data.frame(matrix(0, nrow(presences2), length(grid)))
for (i in 1:length(grid)) {
part[, i] <- terra::extract(grid[[i]], presences2)[, 2]
}
part <- dplyr::tibble(part)
### Remove problematic grids based on presences
# Grids that assigned partitions less than the number of groups will be removed
pp <- sapply(part[pa == 1, ], function(x) {
length(unique(x))
})
pp <- pp == n_part
# Elimination of those partition that have one record in some group
pf <- sapply(part[pa == 1, ], table)
if (is.list(pf) == TRUE) {
pf <- which(sapply(pf, min) < min_occ)
} else {
pf <- which(apply(pf, 2, min) < min_occ)
}
pp[pf] <- FALSE
cell_size <- cell_size[pp]
grid <- grid[pp]
part <- part[, pp]
names(part) <- names(which(pp == TRUE))
### Remove problematic grids based on absences
# Grids that assigned partitions less than the number of groups will be removed
if (any(unique(pa) == 0)) {
pa <- presences2$pr_ab # Vector with presences and absences
pp <- sapply(part[pa == 0, ], function(x) {
length(unique(x))
})
pp <- pp == n_part
# Elimination of those partition that have one record in some group
pf <- sapply(part[pa == 0, ], table)
if (is.list(pf) == TRUE) {
pf <- which(sapply(pf, min) < min_occ)
} else {
pf <- which(apply(pf, 2, min) < min_occ)
}
pp[pf] <- FALSE
cell_size <- cell_size[pp]
grid <- grid[pp]
part <- part[, pp]
names(part) <- names(which(pp == TRUE))
}
if (ncol(part) == 0) {
message("It was not possible to find a good partition. Try to change values in 'n_part', or in 'min_res_mult', 'max_res_mult', or 'num_grids'")
return(NA)
}
# Ncell
ncell <- data.frame(matrix(
0, nrow(presences2),
length(grid)
))
for (i in 1:length(grid)) {
ncell[, i] <- terra::cellFromXY(grid[[i]], terra::geom(presences2)[, c("x", "y")])
}
# Performance of cells ----
# SD of number of records per cell size-----
sd_p <- rep(NA, length(grid))
if (any(unique(pa) == 0)) {
sd_a <- rep(NA, length(grid))
}
for (i in 1:ncol(part)) {
if (any(unique(pa) == 0)) {
sd_a[i] <- stats::sd(table(part[pa == 0, i]))
}
sd_p[i] <- stats::sd(table(part[pa == 1, i]))
}
# Environmental similarity between train and test based on euclidean -----
Env.P <- terra::extract(env_layer, presences2)[-1]
env_sim <- rep(NA, length(grid))
for (i in 1:ncol(part)) {
cmb <- unique(part[, i][[1]]) %>% combn(2)
Env.P1 <- cbind(part[i], Env.P)
Env.P1 <- Env.P1[complete.cases(Env.P1), ]
Env.P1 <- split(Env.P1[, -1], Env.P1[, 1])
euq_c <- list()
for (r in 1:ncol(cmb)) {
euq_c[[r]] <- euc_dist(Env.P1[[cmb[1, r]]], Env.P1[[cmb[2, r]]]) %>% mean()
}
env_sim[i] <- euq_c %>%
unlist() %>%
mean()
rm(list = c("Env.P1"))
}
# I moran-----
spa_auto <- rep(NA, length(grid))
presences2 <- terra::geom(presences2)[, c("x", "y")] %>% as.data.frame()
dist <- euc_dist(presences2, presences2)
dist <- 1 / dist
diag(dist) <- 0
dist[which(dist == Inf)] <- 0
for (p in 1:ncol(part)) {
cmb <- unique(part[, p][[1]]) %>% utils::combn(2)
imoran_grid_c <- rep(NA, ncol(cmb))
dff <- dplyr::tibble(nrow = 1:nrow(part), data["pr_ab"], group = part[p][[1]])
for (c in 1:ncol(cmb)) {
filt <- dff %>%
dplyr::group_by(group, pr_ab) %>%
dplyr::slice_sample(prop = prop) %>%
dplyr::pull(nrow) %>%
sort()
odd <- which((part[p][[1]] == cmb[1, c])[filt])
even <- which((part[p][[1]] == cmb[2, c])[filt])
dist2 <- dist[filt, filt]
dist2[odd, odd] <- 0
dist2[even, even] <- 0
mins <- apply(dist2, 2, function(x) {
max(x, na.rm = TRUE)
})
for (i in 1:length(mins)) {
dist2[, i] <- ifelse(dist2[, i] == mins[i], mins[i], 0)
}
if (nrow(data) < 3) {
imoran_grid_c[c] <- NA
} else {
im <- sapply(
data[filt, names(env_layer)],
function(x) {
suppressMessages(
morani(x,
dist2,
na.rm = TRUE,
scaled = TRUE
)
)
}
)
imoran_grid_c[c] <- mean(abs(im))
}
}
spa_auto[p] <- mean(imoran_grid_c)
}
Opt <-
if (any(unique(pa) == 0)) {
data.frame(n_grid = 1:length(cell_size), cell_size = cell_size, round(
data.frame(spa_auto, env_sim, sd_p, sd_a),
3
))
} else {
data.frame(n_grid = 1:length(cell_size), cell_size = cell_size, round(
data.frame(spa_auto, env_sim, sd_p),
3
))
}
# Cleaning those variances based in data divided in a number of partition less than
# the number of groups
# SELLECTION OF THE BEST CELL SIZE----
Opt2 <- Opt
rownames(Opt2) <- colnames(part)
Dup <-
if (any(unique(pa) == 0)) {
!duplicated(Opt2[c("spa_auto", "env_sim", "sd_p", "sd_a")])
} else {
!duplicated(Opt2[c("spa_auto", "env_sim", "sd_p")])
}
Opt2 <- Opt2[Dup, ]
while (nrow(Opt2) > 1) {
# I MORAN
if (nrow(Opt2) == 1) {
break
}
Opt2 <-
Opt2[which(Opt2$spa_auto <= summary(Opt2$spa_auto)[2]), ]
if (nrow(Opt2) == 1) {
break
}
# Euclidean
Opt2 <-
Opt2[which(Opt2$env_sim >= summary(Opt2$env_sim)[5]), ]
if (nrow(Opt2) == 1) {
break
}
# SD presence
Opt2 <-
Opt2[which(Opt2$sd_p <= summary(Opt2$sd_p)[2]), ]
if (nrow(Opt2) == 2) {
break
}
# SD absences
if (any(unique(pa) == 0)) {
Opt2 <-
Opt2[which(Opt2$sd_a <= summary(Opt2$sd_a)[2]), ]
if (nrow(Opt2) == 2) {
break
}
}
}
if (nrow(Opt2) > 1) {
Opt2 <- Opt2[nrow(Opt2), ]
}
# Final data.frame result----
result <- data.frame(data, .part = c(part[, rownames(Opt2)])[[1]])
result <- result %>% dplyr::select(-names(env_layer))
colnames(result) <- c("pr_ab", "x", "y", ".part")
result <- result[c("x", "y", "pr_ab", ".part")]
grid <- grid[[Opt2$n_grid]]
names(grid) <- ".part"
# Final data.frame result2----
out <- list(
part = dplyr::tibble(result),
best_part_info = dplyr::tibble(Opt2),
grid = grid # Optimum size for presences
)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.