#' Fit and validate Maximum Entropy models with exploration of hyper-parameters that optimize performance
#'
#'
#' @param data data.frame. Database with response (0,1) and predictors values.
#' @param response character. Column name with species absence-presence data (0,1).
#' @param predictors character. Vector with the column names of quantitative
#' predictor variables (i.e. continuous variables).
#' Usage predictors = c("aet", "cwd", "tmin")
#' @param predictors_f character. Vector with the column names of qualitative
#' predictor variables (i.e. ordinal or nominal variables type). Usage predictors_f = c("landform")
#' @param partition character. Column name with training and validation partition groups.
#' @param background data.frame. Database with response variable column only containing 0 values,
#' and predictors variables. All
#' column names must be consistent with data
#' @param grid data.frame. A data frame object with algorithm hyper-parameters values to be tested.
#' It is recommended to generate this data.frame with the grid() function. Hyper-parameters needed
#' for tuning are 'regmult' and 'classes' (any combination of following letters l -linear-, q
#' -quadratic-, h -hinge-, p -product-, and t -threshold-).
#' @param thr character. Threshold used to get binary suitability values (i.e. 0,1)., needed for
#' threshold-dependent performance metrics. More than one threshold type can be used. It is
#' necessary to provide a vector for this argument. The following threshold types are available:
#' \itemize{
#' \item lpt: The highest threshold at which there is no omission.
#' \item equal_sens_spec: Threshold at which sensitivity and specificity are equal.
#' \item max_sens_spec: Threshold at which the sum of the sensitivity and specificity is the
#' highest (aka threshold that maximizes the TSS).
#' \item max_jaccard: The threshold at which the Jaccard index is the highest.
#' \item max_sorensen: The threshold at which the Sorensen index is highest.
#' \item max_fpb: The threshold at which # FPB (F-measure on presence-background data) is
#' highest.
#' \item sensitivity: Threshold based on a specified sensitivity value.
#' Usage thr = c('sensitivity', sens='0.6') or thr = c('sensitivity'). 'sens' refers to
#' sensitivity value. If a sensitivity value is not specified, a default of 0.9 will be used.
#' }
#' If more than one threshold type is used, concatenate them, e.g., thr=c('lpt', 'max_sens_spec',
#' 'max_jaccard'), or thr=c('lpt', 'max_sens_spec', 'sensitivity', sens='0.8'), or thr=c('lpt',
#' 'max_sens_spec', 'sensitivity'). Function will use all thresholds if no threshold is specified.
#'
#' @param metric character. Performance metric used for selecting the best combination of hyper
#' -parameter values. One of the following metrics can be used: SORENSEN, JACCARD, FPB, TSS, KAPPA,
#' AUC, and BOYCE. TSS is used as default.
#' @param clamp logical. If TRUE, predictors and features are restricted to the range seen during
#' model training.
#' @param pred_type character. Type of response required available "link", "exponential", "cloglog"
#' and "logistic". Default "cloglog"
#' @param n_cores numeric. Number of cores use for parallelization. Default 1
#'
#' @details
#' When presence-absence (or presence-pseudo-absence) data are used in data argument
#' in addition to background points, the function will fit models with presences and background
#' points and validate with presences and absences. This procedure makes maxent comparable to other
#' presences-absences models (e.g., random forest, support vector machine). If only presences and
#' background points data are used, function will fit and validate model with presences and
#' background data. If only presence-absences are used in data argument and without background,
#' function will fit model with the specified data (not recommended).
#'
#' @return
#'
#' A list object with:
#' \itemize{
#' \item model: A "maxnet" class object from maxnet package. This object can be used for predicting.
#' \item predictors: A tibble with quantitative (c column names) and qualitative (f column names)
#' variables use for modeling.
#' \item performance: Hyper-parameters values and performance metrics (see \code{\link{sdm_eval}})
#' for the best hyper-parameters combination.
#' \item hyper_performance: Performance metrics (see \code{\link{sdm_eval}}) for each combination
#' of the hyper-parameters.
#' \item data_ens: Predicted suitability for each test partition based on the best model. This
#' database is used in \code{\link{fit_ensemble}}
#' }
#'
#' @importFrom doParallel registerDoParallel
#' @importFrom dplyr bind_rows pull select all_of starts_with filter tibble left_join mutate group_by_at summarise across relocate
#' @importFrom foreach foreach
#' @importFrom maxnet maxnet maxnet.formula
#' @importFrom parallel makeCluster stopCluster
#' @importFrom stats complete.cases
#'
#' @seealso \code{\link{tune_gbm}}, \code{\link{tune_net}}, \code{\link{tune_raf}}, and \code{\link{tune_svm}}.
#'
#'
#' @export
#'
#' @examples
#' \dontrun{
#' data("abies")
#' data("backg")
#' abies # environmental conditions of presence-absence data
#' backg # environmental conditions of background points
#'
#' # Using k-fold partition method
#' # Remember that the partition method, number of folds or replications must
#' # be the same for presence-absence and background points datasets
#' abies2 <- part_random(
#' data = abies,
#' pr_ab = "pr_ab",
#' method = c(method = "kfold", folds = 3)
#' )
#' abies2
#'
#' set.seed(1)
#' backg <- dplyr::sample_n(backg, size = 2000, replace = FALSE)
#' backg2 <- part_random(
#' data = backg,
#' pr_ab = "pr_ab",
#' method = c(method = "kfold", folds = 3)
#' )
#' backg
#'
#'
#' gridtest <-
#' expand.grid(
#' regmult = seq(0.1, 3, 0.5),
#' classes = c("l", "lq", "lqh")
#' )
#'
#' max_t1 <- tune_max(
#' data = abies2,
#' response = "pr_ab",
#' predictors = c("aet", "pH", "awc", "depth"),
#' predictors_f = c("landform"),
#' partition = ".part",
#' background = backg2,
#' grid = gridtest,
#' thr = "max_sens_spec",
#' metric = "TSS",
#' clamp = TRUE,
#' pred_type = "cloglog",
#' n_cores = 2 # activate two cores to speed up this process
#' )
#'
#' length(max_t1)
#' max_t1$model
#' max_t1$predictors
#' max_t1$performance
#' max_t1$data_ens
#' }
tune_max <-
function(data,
response,
predictors,
predictors_f = NULL,
background = NULL,
partition,
grid = NULL,
thr = NULL,
metric = "TSS",
clamp = TRUE,
pred_type = "cloglog",
n_cores = 1) {
. <- model <- TPR <- IMAE <- thr_value <- n_presences <- n_absences <- NULL
variables <- dplyr::bind_rows(c(c = predictors, f = predictors_f))
# Test response variable
r_test <- (data %>% dplyr::pull(response) %>% unique() %>% na.omit())
if ((!all(r_test %in% c(0, 1)))) {
stop("values of response variable do not match with 0 and 1")
}
data <- data.frame(data)
if (!is.null(background)) background <- data.frame(background)
if (is.null(predictors_f)) {
data <- data %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::starts_with(partition))
if (!is.null(background)) {
background <- background %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::starts_with(partition))
}
} else {
data <- data %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::all_of(predictors_f), dplyr::starts_with(partition))
data <- data.frame(data)
for (i in predictors_f) {
data[, i] <- as.factor(data[, i])
}
if (!is.null(background)) {
background <- background %>%
dplyr::select(dplyr::all_of(response), dplyr::all_of(predictors), dplyr::all_of(predictors_f), dplyr::starts_with(partition))
for (i in predictors_f) {
background[, i] <- as.factor(background[, i])
}
}
}
if (!is.null(background)) {
if (!all(table(c(names(background), names(data))) == 2)) {
stop("Column names of database used in 'data' and 'background' arguments do not match")
print(table(c(names(background), names(data))))
}
}
# Remove NAs
complete_vec <- stats::complete.cases(data[, c(response, unlist(variables))])
if (sum(!complete_vec) > 0) {
message(sum(!complete_vec), " rows were excluded from database because NAs were found")
data <- data %>% dplyr::filter(complete_vec)
}
rm(complete_vec)
if (!is.null(background)) {
complete_vec <- stats::complete.cases(background[, c(response, unlist(variables))])
if (sum(!complete_vec) > 0) {
message(sum(!complete_vec), " rows were excluded from database because NAs were found")
background <- background %>% dplyr::filter(complete_vec)
}
rm(complete_vec)
}
# Prepare grid when grid=default or NULL
if (is.null(grid)) {
grid <- expand.grid(
regmult = seq(0.1, 3, 0.05),
classes = c("l", "lq", "lqh", "lqhp", "lqhpt")
)
message("Hyper-parameter values were not provided, default values will be used")
message("regmult = seq(0.1, 3, 0.5)")
message('classes = c("l", "lq", "lqh", "lqhp", "lqhpt")')
}
# Test hyperparameter names
hyperp <- names(grid)
if (!all(c("regmult", "classes") %in% hyperp)) {
stop("Database used in 'grid' argument has to contain this columns for tunning: 'regmult', 'classes'")
}
grid$tune <- 1:nrow(grid)
p_names <- names(data %>% dplyr::select(dplyr::starts_with(partition)))
for (i in p_names) {
if (!is.null(background)) {
Npart_p <- data %>%
dplyr::filter(!!as.symbol(response) == 1) %>%
dplyr::pull({{ i }}) %>%
unique() %>%
sort()
Npart_bg <- background %>%
dplyr::filter(!!as.symbol(response) == 0) %>%
dplyr::pull({{ i }}) %>%
unique() %>%
sort()
if (!all(table(c(Npart_p, Npart_bg)) == 2)) {
stop(
paste(
"Partition groups between presences and background do not match:\n",
paste("Part. group presences:", paste(Npart_p, collapse = " "), "\n"),
paste("Part. group background:", paste(Npart_bg, collapse = " "), "\n")
)
)
}
}
}
rm(i)
# Fit models
np <- ncol(data %>% dplyr::select(dplyr::starts_with(partition)))
p_names <- names(data %>% dplyr::select(dplyr::starts_with(partition)))
eval_partial_list <- list()
# New predictor vectors
if (!is.null(predictors_f)) {
predictors <- c(predictors, predictors_f)
}
cl <- parallel::makeCluster(n_cores)
doParallel::registerDoParallel(cl)
message("Tuning model...")
for (h in 1:np) {
message("Replica number: ", h, "/", np)
out <- pre_tr_te(data, p_names, h)
train <- out$train
test <- out$test
np2 <- out$np2
rm(out)
# In the follow code function will substitutes absences by background points
# only in train database in order to fit maxent with presences and background
# and validate models with presences and absences
if (!is.null(background)) {
background2 <- pre_tr_te(background, p_names, h)
train <- lapply(train, function(x) x[x[, response] == 1, ])
train <- mapply(dplyr::bind_rows, train, background2$train, SIMPLIFY = FALSE)
bgt_test <- background2$test
rm(background2)
}
eval_partial <- list()
for (i in 1:np2) {
message("Partition number: ", i, "/", np2)
mod <- foreach::foreach(ii = 1:nrow(grid), .packages = c("dplyr")) %dopar% {
tryCatch(
{
sampleback <- TRUE
try(mod <- maxnet::maxnet(
p = train[[i]][, response],
data = train[[i]][predictors],
f = maxnet::maxnet.formula(train[[i]][response],
train[[i]][predictors],
classes = grid$classes[ii]
),
regmult = grid$regmult[ii],
addsamplestobackground = sampleback
))
if (!exists("mod")) {
sampleback <- FALSE
try(mod <- maxnet::maxnet(
p = train[[i]][, response],
data = train[[i]][predictors],
f = maxnet::maxnet.formula(train[[i]][response],
train[[i]][predictors],
classes = grid$classes[ii]
),
regmult = grid$regmult[ii],
addsamplestobackground = sampleback
))
}
mod
},
error = function(e) {
NULL
}
)
}
names(mod) <- 1:nrow(grid)
filt <- sapply(mod, function(x) length(class(x)) == 3)
filt <- filt & !is.na(sapply(mod, function(x) x$entropy))
mod <- mod[filt]
grid2 <- grid[filt, ]
tnames <- apply(grid2, 1, function(x) paste(x, collapse = "_"))
if (all(test[[i]][, response] == 1)) {
# Test based on presence and background
test[[i]] <- bind_rows(test[[i]], bgt_test[[i]])
}
# Predict for presences absences data
pred_test <-
lapply(mod, function(x) {
data.frame(
pr_ab = test[[i]][, response],
pred = predict_maxnet(
x,
newdata = test[[i]],
clamp = clamp,
type = pred_type
)
)
})
# Predict for background data
if (!is.null(background)) {
bgt <-
lapply(mod, function(x) {
data.frame(
pr_ab = bgt_test[[i]][, response],
pred = predict_maxnet(
x,
newdata = bgt_test[[i]],
clamp = clamp,
type = pred_type
)
)
})
}
eval <- list()
for (ii in 1:length(pred_test)) {
if (is.null(background)) {
eval[[ii]] <-
sdm_eval(
p = pred_test[[ii]]$pred[pred_test[[ii]]$pr_ab == 1],
a = pred_test[[ii]]$pred[pred_test[[ii]]$pr_ab == 0],
thr = thr
) %>% dplyr::tibble(model = "max", .)
} else {
eval[[ii]] <-
sdm_eval(
p = pred_test[[ii]]$pred[pred_test[[ii]]$pr_ab == 1],
a = pred_test[[ii]]$pred[pred_test[[ii]]$pr_ab == 0],
thr = thr,
bg = bgt[[ii]]$pred
) %>% dplyr::tibble(model = "max", .)
}
}
names(eval) <- tnames
eval <- dplyr::bind_rows(eval, .id = "tnames")
eval <-
dplyr::tibble(dplyr::left_join(dplyr::mutate(grid2, tnames),
eval,
by = "tnames"
)) %>%
dplyr::select(-tnames)
eval_partial[[i]] <- eval
}
# Create final database with parameter performance 1
names(eval_partial) <- 1:np2
eval_partial <- eval_partial[sapply(eval_partial, function(x) !is.null(dim(x)))] %>%
dplyr::bind_rows(., .id = "partition")
eval_partial_list[[h]] <- eval_partial
}
parallel::stopCluster(cl)
# Create final database with parameter performance 2
eval_partial <- eval_partial_list %>%
dplyr::bind_rows(., .id = "replica")
eval_final <- eval_partial %>%
dplyr::group_by_at(c(hyperp, "model", "threshold")) %>%
dplyr::summarise(dplyr::across(
TPR:IMAE,
list(mean = mean, sd = sd)
), .groups = "drop")
filt <- eval_final %>% dplyr::pull(paste0(metric, "_mean"))
filt <- which.max(filt)
best_tune <- eval_final[filt, ]
best_hyperp <- eval_final[filt, hyperp]
# Fit final models with best settings
# Get data for ensemble
message("Fitting best model")
mod <- fit_max(
data = data,
response = response,
predictors = predictors[!predictors %in% predictors_f],
predictors_f = predictors_f,
partition = partition,
thr = thr,
fit_formula = NULL,
background = background,
clamp = clamp,
classes = best_tune$classes,
pred_type = pred_type,
regmult = best_tune$regmult
)
pred_test_ens <- mod[["data_ens"]]
if (all(data[, response] == 1)) {
# Test based on presence and background
data <- bind_rows(data, background)
}
pred_test <- data.frame(
pr_ab = data.frame(data)[, response],
pred = predict_maxnet(
mod$model,
newdata = data,
clamp = clamp,
type = pred_type
)
)
threshold <- sdm_eval(
p = pred_test$pred[pred_test$pr_ab == 1],
a = pred_test$pred[pred_test$pr_ab == 0],
thr = thr
)
result <- list(
model = mod$model,
predictors = variables,
performance = dplyr::left_join(best_tune, threshold[1:4], by = "threshold") %>%
dplyr::relocate({{ hyperp }}, model, threshold, thr_value, n_presences, n_absences),
hyper_performance = eval_final,
data_ens = pred_test_ens
)
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.