require(rstan)
# Stan generative model
sim_stan <- "
functions {
int zibb_rng(int y, int n, real mu, real phi, real kappa) {
if (bernoulli_rng(kappa) == 1) {
return (0);
} else {
return (beta_binomial_rng(n, mu * phi, (1 - mu) * phi));
}
}
}
data {
int<lower=0> N_sample; // number of repertoires
int<lower=0> N_gene; // gene
int<lower=0> N_individual; // number of individuals
int<lower=0> N_condition; // number of conditions
array [N_sample] int N; // repertoire size
array [N_sample] int condition_id; // id of conditions
array [N_sample] int individual_id; // id of replicate
real <lower=0> phi;
real <lower=0, upper=1> kappa;
array [N_condition] vector [N_gene] beta_condition;
vector <lower=0> [N_condition] sigma_condition;
real <lower=0> sigma_alpha;
}
generated quantities {
vector [N_gene] alpha;
array [N_individual] vector [N_gene] alpha_individual;
array [N_sample] vector [N_gene] beta_individual;
// generate usage
array [N_sample] vector <lower=0, upper=1> [N_gene] theta;
array [N_gene, N_sample] int Y;
for(i in 1:N_gene) {
alpha[i] = normal_rng(-3, 0.5);
}
for(i in 1:N_sample) {
for(j in 1:N_gene) {
alpha_individual[individual_id[i]][j] = normal_rng(alpha[j], sigma_alpha);
beta_individual[i][j] = normal_rng(beta_condition[condition_id[i]][j], sigma_condition[condition_id[i]]);
theta[i][j] = inv_logit(alpha_individual[individual_id[i]][j] + beta_individual[i][j]);
Y[j, i] = zibb_rng(Y[j, i], N[i], theta[i][j], phi, kappa);
}
}
}
"
# compile model
model <- rstan::stan_model(model_code = sim_stan)
# generate data based on the following parameters parameters
set.seed(11132)
N_gene <- 10
N_individual <- 6
N_condition <- 3
N_sample <- N_individual*N_condition
condition_id <- rep(x = 1:N_condition, each = N_individual)
N <- rep(x = 1000, times = N_sample)
individual_id <- rep(x = 1:N_individual, times = N_condition)
phi <- 200
kappa <- 0.02
beta_condition <- array(data = 0, dim = c(N_condition, N_gene))
for(c in 1:N_condition) {
for(g in 1:N_gene) {
u <- runif(n = 1, min = 0, max = 1)
if(u <= 0.8) {
beta_condition[c,g] <- rnorm(n = 1, mean = 0, sd = 0.1)
} else {
beta_condition[c,g] <- rnorm(n = 1, mean = 0, sd = 2)
}
}
}
sigma_condition <- rep(x = 0.5, times = N_condition)
sigma_alpha <- 0.25
l <- list(N_sample = N_sample,
N_gene = N_gene,
N_individual = N_individual,
N_condition = N_condition,
N = N,
condition_id = condition_id,
individual_id = individual_id,
phi = phi,
kappa = kappa,
beta_condition = beta_condition,
sigma_condition = sigma_condition,
sigma_alpha = sigma_alpha)
# simulate
sim <- rstan::sampling(object = model,
data = l,
iter = 1,
chains = 1,
algorithm="Fixed_param")
# extract simulation and convert into data frame which can
# be used as input of IgGeneUsage
ysim <- rstan::extract(object = sim, par = "Y")$Y
ysim <- ysim[1,,]
ysim_df <- reshape2::melt(ysim)
colnames(ysim_df) <- c("gene_name", "sample_id", "gene_usage_count")
m <- data.frame(sample_id = 1:l$N_sample,
individual_id = l$individual_id,
condition_id = l$condition_id)
ysim_df <- merge(x = ysim_df, y = m, by = "sample_id", all.x = TRUE)
ysim_df$condition <- paste0("C_", ysim_df$condition_id)
ysim_df$gene_name <- paste0("G_", ysim_df$gene_name)
ysim_df$individual_id <- paste0("I_", ysim_df$individual_id)
ysim_df$condition_id <- NULL
ysim_df$sample_id <- NULL
ysim_df <- ysim_df[, c("individual_id", "condition", "gene_name",
"gene_usage_count")]
d_zibb_5 <- ysim_df
# save
save(d_zibb_5, file = "data/d_zibb_5.RData", compress = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.