#
# pcfmulti.R
#
# $Revision: 1.8 $ $Date: 2016/09/21 07:28:58 $
#
# multitype pair correlation functions
#
pcfcross <-
function(X, i, j, ...,
r=NULL, kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor=c("r","d"))
{
verifyclass(X, "ppp")
stopifnot(is.multitype(X))
if(missing(correction))
correction <- NULL
divisor <- match.arg(divisor)
##
marx <- marks(X)
if(missing(i))
i <- levels(marx)[1]
if(missing(j))
j <- levels(marx)[2]
I <- (marx == i)
J <- (marx == j)
Iname <- paste("points with mark i =", i)
Jname <- paste("points with mark j =", j)
##
result <- pcfmulti(X, I, J, ...,
r=r,
kernel=kernel, bw=bw, stoyan=stoyan,
correction=correction,
divisor=divisor,
Iname=Iname, Jname=Jname)
##
iname <- make.parseable(paste(i))
jname <- make.parseable(paste(j))
result <-
rebadge.fv(result,
substitute(g[i,j](r),
list(i=iname,j=jname)),
c("g", paste0("list", paren(paste(iname, jname, sep=",")))),
new.yexp=substitute(g[list(i,j)](r),
list(i=iname,j=jname)))
return(result)
}
pcfdot <-
function(X, i, ...,
r=NULL, kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor=c("r", "d"))
{
verifyclass(X, "ppp")
stopifnot(is.multitype(X))
if(missing(correction))
correction <- NULL
divisor <- match.arg(divisor)
marx <- marks(X)
if(missing(i))
i <- levels(marx)[1]
I <- (marx == i)
J <- rep.int(TRUE, X$n) # i.e. all points
Iname <- paste("points with mark i =", i)
Jname <- "points"
result <- pcfmulti(X, I, J, ...,
r=r, kernel=kernel, bw=bw, stoyan=stoyan,
correction=correction,
divisor=divisor,
Iname=Iname, Jname=Jname)
iname <- make.parseable(paste(i))
result <-
rebadge.fv(result,
substitute(g[i ~ dot](r), list(i=iname)),
c("g", paste0(iname, "~symbol(\"\\267\")")),
new.yexp=substitute(g[i ~ symbol("\267")](r),
list(i=iname)))
return(result)
}
pcfmulti <- function(X, I, J, ...,
r=NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction=c("translate", "Ripley"),
divisor=c("r","d"),
Iname="points satisfying condition I",
Jname="points satisfying condition J")
{
verifyclass(X, "ppp")
# r.override <- !is.null(r)
divisor <- match.arg(divisor)
win <- X$window
areaW <- area(win)
npts <- npoints(X)
correction.given <- !missing(correction) && !is.null(correction)
if(is.null(correction))
correction <- c("translate", "Ripley")
correction <- pickoption("correction", correction,
c(isotropic="isotropic",
Ripley="isotropic",
trans="translate",
translate="translate",
translation="translate",
best="best"),
multi=TRUE)
correction <- implemented.for.K(correction, win$type, correction.given)
## .......... indices I and J .............................
I <- ppsubset(X, I)
J <- ppsubset(X, J)
if(is.null(I) || is.null(J))
stop("I and J must be valid subset indices")
nI <- sum(I)
nJ <- sum(J)
if(nI == 0) stop(paste("There are no", Iname))
if(nJ == 0) stop(paste("There are no", Jname))
XI <- X[I]
XJ <- X[J]
# lambdaI <- nI/areaW
lambdaJ <- nJ/areaW
nIJ <- sum(I & J)
lambdaIJarea <- (nI * nJ - nIJ)/areaW
## ........... kernel bandwidth and support .........................
if(is.null(bw) && kernel=="epanechnikov") {
# Stoyan & Stoyan 1995, eq (15.16), page 285
h <- stoyan /sqrt(lambdaJ)
hmax <- h
# conversion to standard deviation
bw <- h/sqrt(5)
} else if(is.numeric(bw)) {
# standard deviation of kernel specified
# upper bound on half-width
hmax <- 3 * bw
} else {
# data-dependent bandwidth selection: guess upper bound on half-width
hmax <- 2 * stoyan /sqrt(lambdaJ)
}
########## r values ############################
# handle argument r
rmaxdefault <- rmax.rule("K", win, lambdaJ)
breaks <- handle.r.b.args(r, NULL, win, rmaxdefault=rmaxdefault)
if(!(breaks$even))
stop("r values must be evenly spaced")
# extract r values
r <- breaks$r
rmax <- breaks$max
# recommended range of r values for plotting
alim <- c(0, min(rmax, rmaxdefault))
# initialise fv object
df <- data.frame(r=r, theo=rep.int(1,length(r)))
fname <- c("g", "list(I,J)")
yexp <- quote(g[list(I,J)](r))
out <- fv(df, "r",
quote(g[I,J](r)), "theo", ,
alim,
c("r", makefvlabel(NULL, NULL, fname, "Pois")),
c("distance argument r", "theoretical Poisson %s"),
fname=fname,
yexp=yexp)
########## smoothing parameters for pcf ############################
# arguments for 'density'
denargs <- resolve.defaults(list(kernel=kernel, bw=bw),
list(...),
list(n=length(r), from=0, to=rmax))
#################################################
## compute pairwise distances
## identify close pairs of points
what <- if(any(correction == "translate")) "all" else "ijd"
close <- crosspairs(XI, XJ, rmax+hmax, what=what)
## map (i,j) to original serial numbers in X
orig <- seq_len(npts)
imap <- orig[I]
jmap <- orig[J]
iX <- imap[close$i]
jX <- jmap[close$j]
## eliminate any identical pairs
if(nIJ > 0) {
ok <- (iX != jX)
if(!all(ok))
close <- as.list(as.data.frame(close)[ok, , drop=FALSE])
}
## extract information for these pairs (relative to orderings of XI, XJ)
dclose <- close$d
icloseI <- close$i
# jcloseJ <- close$j
###### compute #######
if(any(correction=="translate")) {
# translation correction
edgewt <- edge.Trans(dx=close$dx, dy=close$dy, W=win, paired=TRUE)
gT <- sewpcf(dclose, edgewt, denargs, lambdaIJarea, divisor)$g
out <- bind.fv(out,
data.frame(trans=gT),
makefvlabel(NULL, "hat", fname, "Trans"),
"translation-corrected estimate of %s",
"trans")
}
if(any(correction=="isotropic")) {
# Ripley isotropic correction
edgewt <- edge.Ripley(XI[icloseI], matrix(dclose, ncol=1))
gR <- sewpcf(dclose, edgewt, denargs, lambdaIJarea, divisor)$g
out <- bind.fv(out,
data.frame(iso=gR),
makefvlabel(NULL, "hat", fname, "Ripley"),
"isotropic-corrected estimate of %s",
"iso")
}
## sanity check
if(is.null(out)) {
warning("Nothing computed - no edge corrections chosen")
return(NULL)
}
# which corrections have been computed?
corrxns <- rev(setdiff(names(out), "r"))
# default is to display them all
formula(out) <- . ~ r
fvnames(out, ".") <- corrxns
#
unitname(out) <- unitname(X)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.