gcoda | R Documentation |
A parallelized implementation of the gCoda approach (Fang et al., 2017), published on GitHub (Fang, 2016).
gcoda(
x,
counts = F,
pseudo = 0.5,
lambda.min.ratio = 1e-04,
nlambda = 15,
ebic.gamma = 0.5,
cores = 1L,
verbose = TRUE
)
x |
numeric matrix (nxp) with samples in rows and OTUs/taxa in columns. |
counts |
logical indicating whether x constains counts or fractions.
Defaults to |
pseudo |
numeric value giving a pseudo count, which is added to all
counts if |
lambda.min.ratio |
numeric value specifying lambda(max) / lambda(min). Defaults to 1e-4. |
nlambda |
numberic value (integer) giving the of tuning parameters. Defaults to 15. |
ebic.gamma |
numeric value specifying the gamma value of EBIC. Defaults to 0.5. |
cores |
integer indicating the number of CPU cores used for computation.
Defaults to 1L. For |
verbose |
logical indicating whether a progress indicator is shown
( |
A list containing the following elements:
lambda | lambda sequence for compuation of EBIC score |
nloglik | negative log likelihood for lambda sequence |
df | number of edges for lambda sequence |
path | sparse pattern for lambda sequence |
icov | inverse covariance matrix for lambda sequence |
ebic.score | EBIC score for lambda sequence |
refit | sparse pattern with best EBIC score |
opt.icov | inverse covariance matrix with best EBIC score |
opt.lambda | lambda with best EBIC score |
Fang Huaying, Peking University (R-Code and documentation)
Stefanie Peschel (Parts of the documentation; Parallelization)
fang2016gcodaGithubNetCoMi
\insertReffang2017gcodaNetCoMi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.