gcoda: gCoda: conditional dependence network inference for...

View source: R/gcoda.R

gcodaR Documentation

gCoda: conditional dependence network inference for compositional data

Description

A parallelized implementation of the gCoda approach (Fang et al., 2017), published on GitHub (Fang, 2016).

Usage

gcoda(
  x,
  counts = F,
  pseudo = 0.5,
  lambda.min.ratio = 1e-04,
  nlambda = 15,
  ebic.gamma = 0.5,
  cores = 1L,
  verbose = TRUE
)

Arguments

x

numeric matrix (nxp) with samples in rows and OTUs/taxa in columns.

counts

logical indicating whether x constains counts or fractions. Defaults to FALSE meaning that x contains fractions so that rows sum up to 1.

pseudo

numeric value giving a pseudo count, which is added to all counts if counts = TRUE. Default is 0.5.

lambda.min.ratio

numeric value specifying lambda(max) / lambda(min). Defaults to 1e-4.

nlambda

numberic value (integer) giving the of tuning parameters. Defaults to 15.

ebic.gamma

numeric value specifying the gamma value of EBIC. Defaults to 0.5.

cores

integer indicating the number of CPU cores used for computation. Defaults to 1L. For cores > 1L, foreach is used for parallel execution.

verbose

logical indicating whether a progress indicator is shown (TRUE by default).

Value

A list containing the following elements:

lambda lambda sequence for compuation of EBIC score
nloglik negative log likelihood for lambda sequence
df number of edges for lambda sequence
path sparse pattern for lambda sequence
icov inverse covariance matrix for lambda sequence
ebic.score EBIC score for lambda sequence
refit sparse pattern with best EBIC score
opt.icov inverse covariance matrix with best EBIC score
opt.lambda lambda with best EBIC score

Author(s)

Fang Huaying, Peking University (R-Code and documentation)
Stefanie Peschel (Parts of the documentation; Parallelization)

References

\insertRef

fang2016gcodaGithubNetCoMi

\insertReffang2017gcodaNetCoMi


stefpeschel/NetCoMi documentation built on Nov. 12, 2024, 7:12 a.m.