gcoda | R Documentation |
A parallelized implementation of the gCoda approach (Fang et al., 2017), published on GitHub (Fang, 2016).
gcoda(
x,
counts = F,
pseudo = 0.5,
lambda.min.ratio = 1e-04,
nlambda = 15,
ebic.gamma = 0.5,
cores = 1L,
verbose = TRUE
)
x |
numeric matrix (nxp) with samples in rows and OTUs/taxa in columns. |
counts |
logical indicating whether x constains counts or fractions.
Defaults to |
pseudo |
numeric value giving a pseudo count, which is added to all
counts if |
lambda.min.ratio |
numeric value specifying lambda(max) / lambda(min). Defaults to 1e-4. |
nlambda |
numberic value (integer) giving the of tuning parameters. Defaults to 15. |
ebic.gamma |
numeric value specifying the gamma value of EBIC. Defaults to 0.5. |
cores |
integer indicating the number of CPU cores used for computation.
Defaults to 1L. For |
verbose |
logical indicating whether a progress indicator is shown
( |
A list containing the following elements:
lambda | lambda sequence for compuation of EBIC score |
nloglik | negative log likelihood for lambda sequence |
df | number of edges for lambda sequence |
path | sparse pattern for lambda sequence |
icov | inverse covariance matrix for lambda sequence |
ebic.score | EBIC score for lambda sequence |
refit | sparse pattern with best EBIC score |
opt.icov | inverse covariance matrix with best EBIC score |
opt.lambda | lambda with best EBIC score |
Fang Huaying, Peking University (R-Code and documentation)
Stefanie Peschel (Parts of the documentation; Parallelization)
Fang H (2016). “gCoda: conditional dependence network inference for
compositional data.” https://github.com/huayingfang/gCoda.
Fang H, Huang C, Zhao H, Deng M (2017). “gCoda: Conditional Dependence
Network Inference for Compositional Data.”
Journal of Computational Biology, 24(7), 699–708.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.