# Performes rolling window estimateion and n step ahead predicitions on multiple series simultaniously
# In these function ... is to controll the solver options (solver.method & solver.control)
#In simpleDoRoll: Some functions only return quantiles, some only variance. Needs to be fixed
simpleDoRoll <- function(x, f=stdGARCH, pval=c(0.01, 0.025), n.ahead=10, win.size=500, dates=NULL,
aggf=aggprod, ... ){
n <- length(x)
if(!is.null(dates))if(length(dates)!=n){
warning("Length of dates array do not match length of data array")
dates=NULL
}
num <- floor((n-win.size)/n.ahead)
dfOut <- data.frame(Convergence = logical(num), Emp_ret = numeric(num), Exp_var = numeric(num),
Date=as.Date(NA), matrix(NA, ncol=length(pval), nrow=num))
colnames(dfOut)[-c(1,2,3,4)] <- paste0(pval)
a <- 1
b <- win.size
i <- 1
while(b <= n-n.ahead){
# f() standard optmizing function for package densPred
fit <- f(x[a:b], n.ahead=n.ahead, ... )
if(fit$convergence!=0){
warning(paste0("Convergence is: ", fit$convergence,
" for window: ", a, " to ", b, ". Using paramters from previous optimization."))
if(a==1)stop("Convergance not possible for first window")
else fit <- f(x[a:b], n.ahead=n.ahead, param=prevPar, doOptim=FALSE)
bConv = FALSE
}else{
prevPar <- fit$par
bConv = TRUE
}
vHt <- sum(fit$HtOut)
if(!is.null(dates))dfOut[i, "Date"] <- dates[b] #The date for the last obs in sample
dfOut[i, c("Convergence", "Emp_ret", "Exp_var", paste0(pval))] <-
c(bConv, aggf(x[(b+1):(b+n.ahead)]), vHt, qnorm(pval, sd=sqrt(vHt)))
i <- i+1
a <- a+n.ahead
b <- b+n.ahead
}
dfOut
}
# Takes a series and do rolling window optmiziation and out of sample predictions and evaluation with (possible) several models
parallelTest.byFunc <- function(ser, serName="series1", vf=c(stdGARCH, eGARCH), vfNames=paste0("model", 1:length(vf)), dates=NULL,
pval=c(0.01, 0.025), n.ahead=10, win.size=500, ret.type="arithmetic", freq="freq",
... ){
n <- length(vf)
if(length(vfNames)!=n){
warning("Number of function names do not match the number of functions to be evaluated")
vfNames=rep("", n)
}
if(!is.null(dates))if(length(dates)!=length(ser)){
warning("Length of dates array do not match length of data array")
dates=NULL
}else{
daterange <- format(range(dates), "%Y%m%d")
}
else{
daterange <- rep("00000000" ,2)
}
if(any(is.na(daterange)))daterange <- rep("00000000" ,2)
aggf = switch(ret.type, "arithmetic"=aggprod, "logarithmic"=aggsum)
ptm <- proc.time()
cl <- makeCluster(rep("localhost", n), type = "SOCK") #n should not exceed number of cores
registerDoSNOW(cl)
lOut <- foreach(i=1:n, .packages="densPred", .inorder=TRUE) %dopar% {
f <- vf[[i]]
dfX <- simpleDoRoll(ser, f=f, pval=pval, n.ahead=n.ahead, win.size=win.size, aggf=aggf, dates, ...)
res <- varTest(pval, dfX[, "Emp_ret"], dfX[, paste0(pval)])
# Collection of evaluation scores for distributional predictions
mPass <- mean(res[ ,-c(1,2)]>0.05)
medAPE <- median(abs((dfX$Emp_ret[-1]^2-dfX$Exp_var[-1])/dfX$Emp_ret[-1]^2))
AMAPE <- mean(abs((dfX$Emp_ret[-1]^2-dfX$Exp_var[-1])/(dfX$Emp_ret[-1]^2+dfX$Exp_var[-1])))
# Identification string for this analysis.
rObjName <- paste0( serName, "_", vfNames[i], "_",
paste(daterange, collapse=""), "_",
n.ahead, "_", win.size, "_", freq, "_",
ret.type)
list(series=serName, model=vfNames[i], rObj=rObjName,
num.pred= nrow(dfX), n.non.conv=sum(!dfX[ ,"Convergence"]),
qScore=res, mPass=mPass, medAPE=medAPE, AMAPE=AMAPE,
daterange=daterange, win.size=win.size, ret.type=ret.type, n.ahead=n.ahead,
tot.obs=length(ser), freq=freq, allData=dfX)
}#foreach
stopCluster(cl)
print(proc.time() - ptm)
names(lOut) <- vfNames
lOut
}
# Takes (possible) several series and do rolling window optmiziation and out of sample predictions and evaluation
parallelTest.bySeries <- function(ser, serNames=paste0("series", 1:length(ser)), f=stdGARCH, fName="model", dates=NULL,
pval=c(0.01, 0.025), n.ahead=10, win.size=500, ret.type="arithmetic",
freq="freq", ... ){
n <- length(ser)
if(length(serNames)!=n){
warning("Number of series names do not match the number of series")
serNames=rep("", n)
}
aggf = switch(ret.type, "arithmetic"=aggprod, "logarithmic"=aggsum)
ptm <- proc.time()
cl <- makeCluster(rep("localhost", n), type = "SOCK") #n should not exceed number of cores
registerDoSNOW(cl)
lOut <- foreach(i=1:n, .packages="densPred", .inorder=TRUE) %dopar% {
dfX <- simpleDoRoll(ser[[i]], f=f, pval=pval, n.ahead=n.ahead, win.size=win.size, aggf=aggf, dates[[i]], ...)
res <- varTest(pval, dfX[, "Emp_ret"], dfX[, paste0(pval)])
#Dates must be handled within loop since the date
if(!is.null(dates[[i]]))if(length(dates[[i]])!=length(ser[[i]])){
warning("Length of dates array do not match length of data array")
dates[[i]]=NULL
}else{
daterange <- format(range(dates[[i]]), "%Y%m%d")
}
else{
daterange <- rep("00000000" ,2)
}
if(any(is.na(daterange)))daterange <- rep("00000000" ,2)
#------------------------------------------------
# Collection of evaluation scores for distributional predictions
mPass <- mean(res[ ,-c(1,2)]>0.05)
medAPE <- median(abs((dfX$Emp_ret[-1]^2-dfX$Exp_var[-1])/dfX$Emp_ret[-1]^2))
AMAPE <- mean(abs((dfX$Emp_ret[-1]^2-dfX$Exp_var[-1])/(dfX$Emp_ret[-1]^2+dfX$Exp_var[-1])))
# Identification string for this analysis.
rObjName <- paste0( serNames[i], "_", fName, "_",
paste(daterange, collapse=""), "_",
n.ahead, "_", win.size, "_", freq, "_",
ret.type)
list(series=serNames[i], model=fName, rObj=rObjName,
num.pred= nrow(dfX), n.non.conv=sum(!dfX[ ,"Convergence"]),
qScore=res, mPass=mPass, medAPE=medAPE, AMAPE=AMAPE,
daterange=daterange, win.size=win.size, ret.type=ret.type, n.ahead=n.ahead,
tot.obs=length(ser[[i]]), freq=freq, allData=dfX)
}#foreach
stopCluster(cl)
print(proc.time() - ptm)
names(lOut) <- paste0("l", serNames)
lOut
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.