#' Initialize hdp object
#' Allocate process index for hdp initialization.
#' Prepare for \code{\link[hdpx]{hdp_init}}
#'
#' @param input.catalog Input spectra catalog as a matrix or
#' in \code{\link[ICAMS]{ICAMS}} format.
#'
#' @param K.guess Suggested initial value of the number of
#' signatures, passed to \code{\link[hdpx]{dp_activate}} as
#' \code{initcc}.
#'
#' @param multi.types A logical scalar or
#' a character vector.
#' If \code{FALSE}, The HDP analysis
#' will regard all input spectra as one tumor type.
#'
#' If \code{TRUE}, the HDP analysis
#' will infer tumor types based on the string before "::" in their names.
#' e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA"
#'
#' If \code{multi.types} is a character vector, then it should be of the same length
#' as the number of columns in \code{input.catalog}, and each value is the
#' name of the tumor type of the corresponding column in \code{input.catalog}.
#'
#' e.g. \code{c("SA.Syn.Ovary-AdenoCA", "SA.Syn.Kidney-RCC")}.
#'
#' @param verbose If \code{TRUE} then \code{message} progress information.
#'
#' @param gamma.alpha Shape parameter of gamma distribution from which
#' the Dirichlet process concentration parameters are drawn; in this
#' function the gamma distributions for all Dirichlet processes are the same.
#'
#' @param gamma.beta Inverse scale parameter (rate parameter) of gamma distribution
#' from which the Dirichlet process concentration parameters are drawn; in this
#' function the gamma distributions for all Dirichlet processes are the same.
#'
#' @param one.parent.hack IF TRUE, the vector of parents for the Dirichlet
#' processes looks like c(0, 1, 1, 1, 1, ...), not c(0, 1, 2, 2, 2, ....).
PrepInit <- function(multi.types,
input.catalog,
verbose,
K.guess,
gamma.alpha=1,
gamma.beta=1,
one.parent.hack = FALSE){
if (mode(input.catalog) == "character") {
if (verbose) message("Reading input catalog file ", input.catalog)
input.catalog <- ICAMS::ReadCatalog(input.catalog, strict = FALSE)
} else {
input.catalog <- input.catalog
}
# hdp gets confused if the class of its input is not matrix.
convSpectra <- t(input.catalog)
# class(convSpectra) <- "matrix"
# convSpectra <- t(convSpectra)
number.channels <- nrow(input.catalog)
number.samples <- ncol(input.catalog)
if (verbose) {
message("Guessed number of Dirichlet process raw data clusters) = ",
K.guess)
}
if (multi.types == FALSE) { # All tumors belong to one tumor type
num.tumor.types <- 1
ppindex <- c(0,1,rep(2,number.samples)) # Parent Dirichlet process index
if (one.parent.hack) ppindex <- c(0, rep(1, number.samples))
} else {
if (multi.types == TRUE) {
sample.names <- colnames(input.catalog)
if (!all(grepl("::", sample.names)))
stop("Every sample name needs to be of",
" the form <sample_type>::<sample_id>")
tumor.types <- sapply(
sample.names,
function(x) {strsplit(x, split = "::", fixed = T)[[1]][1]})
num.tumor.types <- length(unique(tumor.types))
} else if (is.character(multi.types)) {
num.tumor.types <- length(unique(multi.types))
tumor.types <- multi.types
} else {
stop("multi.types should be TRUE, FALSE, or a character vector of tumor types")
}
# 0 refers to the grandparent Dirichlet process node.
# There is a level-one node for each tumor type, indicated by a 1.
ppindex <- c(0, rep(1, num.tumor.types))
# Each tumor type gets its own number.
ppindex <- c(ppindex, 1 + as.numeric(as.factor(tumor.types))) # To do, update this with the more transparent code
# cat(ppindex, "\n")
# ppindex is now something like
# c(0, 1, 1, 2, 2, 2, 3, 3)
# 0 is grandparent
# 1 is a parent of one type (there are 2 types)
# 2 indicates tumors of the first type
# 3 indicates tumors of second type
}
cpindex <- 1 + ppindex
# Calculate the number of levels in the DP node tree.
dp.levels <- length(unique(ppindex))
if (verbose) {
message("Gamma distribution was set to shape = ", gamma.alpha,
" rate (inverse scale) = ", gamma.beta)
}
alphaa <- rep(gamma.alpha, dp.levels)
alphab <- rep(gamma.beta, dp.levels)
invisible(list(num.tumor.types = num.tumor.types,
number.channels = number.channels,
convSpectra = convSpectra,
ppindex = ppindex,
cpindex = cpindex,
alphaa = alphaa,
alphab = alphab))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.