Description Usage Arguments Value Examples
View source: R/xtable-classification.R
Classification Table classification_table Richtige und falsche Klassifikationen Bei 2x2 Tabellen der Kappa Test
Sensitivity = A/(A+C)
Specificity = D/(B+D)
Prevalence = (A+C)/(A+B+C+D)
PPV = (sensitivity * prevalence)/((sensitivity*prevalence) + ((1-specificity)*(1-prevalence)))
NPV = (specificity * (1-prevalence))/(((1-sensitivity)*prevalence) + ((specificity)*(1-prevalence)))
Detection Rate = A/(A+B+C+D)
Detection Prevalence = (A+B)/(A+B+C+D)
Balanced Accuracy = (sensitivity+specificity)/2
Precision = A/(A+B)
Recall = A/(A+C)
F1 = (1+beta^2)*precision*recall/((beta^2 * precision)+recall)
Klassifikation fuer Binominal-GLM und zeigt die ...
Klassifikation.glm
xtabs-Objekt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | Klassifikation(x, ...)
Klassifikation2(
x,
...,
caption = "",
include.xtab = TRUE,
include.statistics = TRUE
)
## S3 method for class 'glm'
Klassifikation(x, thresh = 0.5, caption = "Klassifikation", ...)
## S3 method for class 'xtabs'
Klassifikation(
x,
lvs = c("positiv", "negativ"),
digits = 2,
prevalence = NULL,
...
)
|
x |
glm oder xtab Objekt |
... |
weitere Objekte nicht benutzt |
caption |
an Output |
thresh |
Klassifikation auf Basis der Vorhersage Schwelle bei P=0.5 |
A data.frame Objekt.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ##https://www.hranalytics101.com/how-to-assess-model-accuracy-the-basics/
Kappa2(x<-xtabs(~gruppe+lai, hkarz))
head(hkarz)
fit1<- glm(gruppe~lai, hkarz, family = binomial)
#thkarz <- as.data.frame(xtabs(~gruppe+lai, hkarz))
#fit2<- glm(Freq ~ gruppe*lai, thkarz, family = poisson())
tab <- Klassifikation(x)$statistic[c(1,7,8),]
x2 <- Klassifikation(fit1)
tab$fit <- x2$statistic[c(1,7,8), 2]
tab
require(pROC)
roc_curve <- roc(x2$response, x2$predictor)
windows(8,8)
plot(roc_curve, print.thres = "best",
print.auc=TRUE)
abline(v = 1, lty = 2)
abline(h = 1, lty = 2)
#text(.90, .97, labels = "Ideal Model")
#points(1,1, pch = "O", cex = 0.5)
#fit1<- glm(gruppe~lai, hkarz, family = binomial)
#thkarz <- as.data.frame(xtabs(~gruppe+lai, hkarz))
#fit2<- glm(Freq ~ gruppe*lai, thkarz, family = poisson())
hkarz$LAI<- factor(hkarz$lai, 0:1, c("pos", "neg"))
APA2(xtabs(~gruppe+LAI, hkarz), test=TRUE, type="fischer")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.