Description Usage Arguments Details Value Examples
Rangordnungen von Objekten koennen durch eine Transformation der Rangreihen in Intervallskalierte Merkmale ueberfuehrt werden. Die Grundidee dieser Methode geht auf Thurstone (1927) nach dem "Law of Categorical Judgement" zurueck.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | Rangreihe(
...,
caption = "Rangreihe",
note = "Law of Categorical Judgement",
output = stp25output::which_output(),
na.action = na.pass,
include.percent = TRUE,
include.freq = TRUE,
include.mean = TRUE,
include.z = TRUE,
include.na = TRUE,
groups = NULL,
order = TRUE,
decreasing = TRUE,
digits.mean = 2
)
Rangreihe_default(
items,
caption = "",
note = "",
output = stp25output::which_output(),
include.percent = TRUE,
include.freq = TRUE,
include.mean = TRUE,
include.z = TRUE,
include.na = TRUE,
groups = NULL,
order = TRUE,
decreasing = TRUE,
digits.mean = 2,
input = NULL,
pattern = "____"
)
|
... |
Weitere Argumente |
caption, note, output |
an stp25output |
include.percent, include.freq, include.mean, include.z, include.na |
was soll ausgewertet werden |
groups |
gruppen |
digits.mean, order, decreasing |
sortierung |
items |
data.frame |
input |
Format der Items c("ranking", "ordering"), |
pattern |
intern gruppen |
Dabei werden die kumulierten Haeufigkeiten in Normalverteilte z-Werte uebergefuehrt und aus diesen die Intervallskalierten Markmalsauspraegungen gebildet.
Literatur: Bortz, J. & Doering, N. (2006). Forschungsmethoden und Evaluation fuer Human-und Sozialwissenschaftler (4. Auflage). Berlin: Springer. Seite 155
Vector
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | require(stpvers)
library(PlackettLuce)
nlv <- 5
n <- 2 * 3 * nlv * 1
set.seed(n)
DF <-
data.frame(
Geschlecht = gl(2, n / 2, labels = c("Maennlich", "Weiblich")),
Alter = gl(4, n / 4, labels = c("20-29", "30-39", "40-49", "50-59")),
Landwirtschaft = gl(2, n / 2, labels = c("konventionell", "biologisch"))
)
Attribute <-
as.data.frame(t(apply(matrix(NA, ncol = n, nrow = 5), 2,
function(x)
sample.int(5))))
Attribute[1, ] <- c(5, 1, 4, 2, 3)
Attribute[2, ] <- c(5, 1, 4, 2, 3)
Attribute[3, ] <- c(5, 2, 4, 3, 1)
Attribute[4, ] <- c(5, 1, 4, 3, 2)
Attribute[5, ] <- c(5, 1, 4, 3, 2)
Attribute[21, ] <- c(1, 2, 5, 4, 3)
Attribute[22, ] <- c(1, 4, 5, 3, 2)
Attribute[23, ] <- c(2, 5, 1, 4, 3)
Attribute[24, ] <- c(1, 4, 2, 5, 3)
Attribute[25, ] <- c(1, 4, 3, 5, 2)
attribute <- c("Verfuegbarkeit",
"Vielfalt",
"Qualitaet",
"Geschmack",
"Preis")
Attribute<- dapply2(Attribute, function(x) factor(x, 1:5, attribute))
DF <- cbind(DF, Attribute)
head(DF)
res <-
Rangreihe( ~ V1+V2+V3+V4+V5,
DF, include.percent=FALSE, order=FALSE, include.na=FALSE,
caption="Produkte aus konventioneller und biologischer Landwirtschaft")
res$input
names(res)
x<- res$res
R <- as.rankings(res$items, res$input)
mod <- PlackettLuce( R )
coef(mod)
summary(mod)
x$pc <- round(coef(mod, log = FALSE) ,2)
x$log.pc <- round(coef(mod, log = TRUE) ,2)
x[order(x$pc,decreasing=TRUE),]
DF1 <- data.frame(
A = c(1, 1, 1, 2, 3, 1),
B = c(2, 2, 2, 3, 2, 3),
C = c(3, 3, 3, 1, 1, NA),
D = c(NA, NA, NA, NA, NA, 2)
)
DF2 <- data.frame(
R1 = factor(c("A", "A", "A", "C", "C", "A"), c("A", "B", "C", "D")),
R2 = factor(c("B", "B", "B", "A", "B", "D"), c("A", "B", "C", "D")),
R3 = factor(c("C", "C", "C", "B", "A", "B"), c("A", "B", "C", "D"))
)
Rangreihe(DF1)$mean
Rangreihe(DF2)$mean
dat_bortz<-
as.table(matrix(c(
2,8,10,13,17,
5,10,15,18,2,
10,12,20,5,3,
15,20,10,3,2,
22,18,7,2,1)
, nrow = 5, ncol=5, byrow=TRUE,
dimnames = list(c("A", "B", "C", "D", "E"),1:5)))
Rangreihe(dat_bortz)
# dat_table <-
# as.table(matrix(c(
# 50,0,0,0,0,
# 0,50,0,0,0,
# 0,0,50,0,0,
# 0,0,0,50,0,
# 0,0,0,0,50
# )
# , nrow = 5, ncol=5, byrow=TRUE,
# dimnames = list(c("A", "B", "C", "D", "E"),1:5)))
# # Calc_Rank(dat_table)
n <- 2 * 3 * 4 * 1
set.seed(n)
kaffee <- c("Guatemala", "Vietnam", "Honduras", "Äthiopien")
sex<- c("male", "female")
age<- c("20-29", "30-39", "40-49", "50-59")
kaffe<- c("Espresso", "Filterkaffee", "Milchkaffee")
DF <-
data.frame(
sex = factor("male",sex),
Alter = factor("20-29",age ),
Kaffeeform = factor("Espresso", kaffe),
R1 = factor(kaffee[1], kaffee),
R2 = factor(kaffee[2], kaffee),
R3 = factor(kaffee[3], kaffee),
R4 = factor(kaffee[4], kaffee)
)
DF<- rbind(DF,DF,DF,DF,DF,DF,DF,DF,DF,DF,DF,DF,DF,DF,DF,DF,DF)
for(i in 1:n){
DF<- rbind(DF,
c(sample(sex)[1],
sample(age)[1],
sample(kaffe)[1],
sample(kaffee)
))
}
x <- DF[4:7]
Rangreihe(x, include.percent=FALSE, groups=DF$sex)
x<-Rangreihe(R1 + R2 +R3 ~sex, DF, include.percent=FALSE, output=FALSE)
names( x)
x$mean
#'
#lattice::dotplot( reorder(Items, mean)~ mean|"Kaffee",
x$mean, groups=group , xlab="",
# xlim=range(x$mean$mean)*1.10 , auto.key=list(), cex=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.