Description Usage Arguments Value Examples
APA2.matchit print a short summary
Corr1() wird in in APA2 beim Einzelvergeich verwendet.
Die Interne Funktion Corr2() wird in APA2 verwendete um Korrelation zu berechnen.
APA2 erstellt fertigen HTML-Tabellen Output.
Die Funktion APA2.formula
estellt die Standard-Tabellen (analog wie die Hmisc:summary).
Links stehen die Zielvariablen rechts die Gruppen.
Fie Formel a1 + a2[4] +a3 ~ group1 + group2
ergibt zwei Auswertungen. Die Zahle in eckiger Klammer
sind die Nachkommastellen. Achtung die Formeln sind auf 500 zeichen begrenzt (Limitation von der Funktion deparse()
)
Einstellungen werden global erstellt:
set_my_options(prozent=list(digits=c(1,0), style=2))
get_my_options()$apa.style$prozent
Likert type : c(1, 2), oder c("Freq", "Precent")
Errate korekte Auswertung und Extrahieren der Variablen aus Formula.
Kano: von Kano-Fragebogen.
APA-Methode fuer pwr::pwr.f2.test
APA-Methode fuer meta
Ausgabe von Regressions Tabelle nach der APA-Style vorgabe. Die Funktion ist eine Kopie von texreg aggregate.matrix.
Ordered Logistic or Probit Regression https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/
MANOVA: APA2(x, , test="Wilks") test : "Wilks", "Pillai"
Canonical Discriminant Analysis (MANOVA)
Anova- Methode (MANOVA)
LDA (linear discriminants analysis) Erweiterung der MANOVA
APA2.glht multcomp::glht
anova: APA2.aov(x, include.eta = TRUE)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | ## S3 method for class 'htest'
APA2(x, caption = "", ...)
## S3 method for class 'pairwise.htest'
APA2(x, caption = "", ...)
## S3 method for class 'ICC'
APA2(x, caption = "ICC", note = NULL, type = c(1, 4), output = which_output())
## S3 method for class 'matchit'
APA2(x, ...)
## S3 method for class 'summary.matchit'
APA2(x, ..., digits = 2)
## S3 method for class 'bland_altman'
APA2(
x,
caption = paste0("Difference (", x$name.diff, "), Mean (", x$name, ")"),
note = "",
...
)
## S3 method for class 'bland_altman'
print(x)
Corr1(
y,
n = nrow(y),
type = "pearson",
include.p = FALSE,
include.stars = TRUE,
cor_diagonale_up = TRUE,
dimnames = FALSE
)
Corr2(x, y = NULL, type = "pearson", stars, ...)
APA2(x, ...)
## S3 method for class ''NULL''
APA2(x, ...)
## S3 method for class 'psychobject'
APA2(
x,
caption = "",
note = NULL,
include.ci = FALSE,
include.effect = FALSE,
output = stp25output::which_output(),
...
)
## Default S3 method:
APA2(x, ...)
## S3 method for class 'formula'
APA2(
x,
data = NULL,
caption = "",
fun = NULL,
type = c("auto", "freq", "mean", "median", "ci", "multiresponse", "cohen.d",
"effsize", "freq.ci", "describe"),
note = "",
na.action = na.pass,
test = FALSE,
corr_test = "pearson",
cor_diagonale_up = TRUE,
direction = "long",
order = FALSE,
decreasing = TRUE,
use.level = 1,
include.n = TRUE,
include.all.n = NULL,
include.header.n = TRUE,
include.total = FALSE,
include.test = test,
include.p = FALSE,
include.stars = TRUE,
include.names = FALSE,
include.labels = TRUE,
digits = NULL,
digits.mean = if (!is.null(digits)) c(digits, digits) else NULL,
digits.percent = if (is.null(digits)) options()$stp25$apa.style$prozent$digits else
c(digits, 0),
output = which_output(),
...
)
Recast2_fun(
x,
data,
caption = "",
fun,
direction = "long",
note = "",
include.n = FALSE,
...
)
## S3 method for class 'likert'
APA2(
x,
caption = "",
note = "",
ReferenceZero = NULL,
type = "percent",
include.mean = TRUE,
na.exclude = FALSE,
labels = c("low", "neutral", "high"),
order = FALSE,
output = which_output(),
...
)
errate_statistik2(
Formula,
data,
caption = "caption",
note = "note",
type = NULL,
na.action = na.pass,
exclude = NA,
include.n = TRUE,
include.all.n = NULL,
include.header.n = TRUE,
include.total = FALSE,
include.test = FALSE,
include.p = TRUE,
include.stars = FALSE,
corr_test = "pearson",
cor_diagonale_up = TRUE,
max_factor_length = 35,
order = FALSE,
decreasing = FALSE,
useconTest = FALSE,
normality.test = FALSE,
digits.mean = options()$stp25$apa.style$m$digits,
digits.percent = options()$stp25$apa.style$prozent$digits[1],
test_name = "Hmisc",
...
)
## S3 method for class 'fa'
APA2(...)
## S3 method for class 'principal'
APA2(
x,
caption = "",
note = "",
digits = 2,
all = FALSE,
cut = 0.3,
sort = TRUE,
suppress.warnings = TRUE,
...
)
## S3 method for class 'stp25_reliability'
APA2(x, caption = "", note = "", output = which_output(), ...)
## S3 method for class 'Kano'
APA2(x, caption = "", note = NULL, output = which_output(), ...)
## S3 method for class 'Kano'
print(x, ...)
## S3 method for class 'power.htest'
APA(x, ..., output = which_output())
## S3 method for class 'meta'
APA2(
x,
caption = "Meta-analysis",
note = paste("estimate:", x$sm, x$method.smd),
include.table = TRUE,
include.fixed = FALSE,
include.random = TRUE,
include.sub = TRUE,
include.total = TRUE,
include.heterogeneity = TRUE,
digits = 2,
output = which_output(),
...
)
## S3 method for class 'list'
APA2(...)
## S3 method for class 'lm'
APA2(
x,
caption = NULL,
note = NULL,
output = stp25output::which_output(),
col_names = NULL,
include.b = TRUE,
include.se = TRUE,
include.beta = FALSE,
include.ci = FALSE,
include.r = TRUE,
include.test = FALSE,
include.eta = TRUE,
include.sumsq = TRUE,
include.meansq = FALSE,
digits.test = 2,
ci.level = 0.95,
test.my.fun = FALSE,
conf.style.1 = TRUE,
...
)
## S3 method for class 'glm'
APA2(
x,
caption = NULL,
note = NULL,
output = stp25output::which_output(),
col_names = NULL,
include.b = TRUE,
include.se = TRUE,
include.ci = FALSE,
include.odds = TRUE,
include.odds.ci = include.ci,
include.statistic = TRUE,
include.p = TRUE,
include.stars = FALSE,
include.r = TRUE,
include.pseudo = include.r,
include.test = FALSE,
include.rr = FALSE,
include.rr.ci = include.ci,
ci.level = 0.95,
conf.method = "Wald",
test.my.fun = FALSE,
conf.style.1 = TRUE,
digits = 2,
...
)
## S3 method for class 'lme'
APA2(...)
## S3 method for class 'lmerMod'
APA2(
x,
caption = NULL,
note = NULL,
output = stp25output::which_output(),
col_names = NULL,
include.b = TRUE,
include.se = TRUE,
include.ci = FALSE,
include.odds = FALSE,
include.odds.ci = include.ci,
include.statistic = TRUE,
include.p = TRUE,
include.stars = FALSE,
include.r = TRUE,
include.pseudo = include.r,
include.test = FALSE,
ci.level = 0.95,
conf.method = "Wald",
test.my.fun = FALSE,
conf.style.1 = TRUE,
digits = 2,
...
)
## S3 method for class 'polr'
APA2(
x,
caption = NULL,
note = NULL,
include.b = TRUE,
include.se = TRUE,
include.ci = FALSE,
include.odds = TRUE,
...
)
## S3 method for class 'step'
APA2(
x,
caption = "Backward elimination of non-significant effects of linear mixed effects model",
note = "",
include.se = FALSE,
include.df = FALSE,
...
)
## S3 method for class 'manova'
APA2(
x,
test = "Wilks",
caption = "MANOVA",
note = "",
type = c("anova", "manova"),
include.eta = TRUE,
output = which_output()
)
## S3 method for class 'candisc'
APA2(x, caption = NA, note = "", output = which_output(), LRtests = TRUE, ...)
## S3 method for class 'Anova.mlm'
APA2(x, caption = NA, note = "", output = which_output(), ...)
## S3 method for class 'lda'
APA2(
x,
fit_predict = MASS:::predict.lda(x),
newdata = model.frame(x),
caption = "",
note = "",
output = which_output(),
...
)
## S3 method for class 'TukeyHSD'
APA2(
x,
caption = "TukeyHSD",
note = "",
output = stp25output::which_output(),
...
)
## S3 method for class 'glht'
APA2(
x,
caption = "Multiple Comparisons of Means",
note = "",
output = stp25output::which_output(),
include.ci = TRUE,
level = 0.95,
...
)
## S3 method for class 'multicomp'
APA2(x, ...)
## S3 method for class 'anova'
APA2(
x,
caption = gsub("\\n", "", paste(attr(x, "heading"), collapse = ", ")),
note = paste("contrasts: ", paste(options()$contrasts, collapse = ", ")),
output = stp25output::which_output(),
include.eta = FALSE,
include.sumsq = TRUE,
include.meansq = FALSE,
...
)
## S3 method for class 'aov'
APA2(
x,
caption = "ANOVA",
note = paste("contrasts: ", paste(options()$contrasts, collapse = ", ")),
output = stp25output::which_output(),
col_names = NULL,
...
)
## S3 method for class 'summary.aov'
APA2(
x,
caption = "ANOVA",
note = "",
output = stp25output::which_output(),
col_names = NULL,
...
)
## S3 method for class 'aovlist'
APA2(x, output = stp25output::which_output(), col_names = NULL, ...)
## S3 method for class 'epi.tests'
APA2(x, ...)
## S3 method for class 'loglm'
APA2(
x,
caption = "Likelihood",
note = "",
output = stp25output::which_output(),
col_names = NULL,
...
)
## S3 method for class 'summary.table'
APA2(x, ...)
## S3 method for class 'table'
APA2(...)
## S3 method for class 'xtabs'
APA2(
x,
caption = "",
note = "",
output = stp25output::which_output(),
digits = NULL,
include.total = FALSE,
include.total.columns = FALSE,
include.total.sub = FALSE,
include.total.rows = FALSE,
include.percent = TRUE,
include.count = TRUE,
include.margins = TRUE,
margin = NA,
add.margins = NA,
include.correlation = FALSE,
include.test = FALSE,
include.sensitivity = FALSE,
prevalence = NULL,
...
)
|
x |
epi.tests Objekt |
caption, note |
Ueberschrift an Output |
... |
an Output |
type |
formula: |
output |
Ausgabe von Ergebiss ueber Output |
digits |
Nachkommastellen |
cor_diagonale_up |
bei Correlation art der Formatierung |
include.ci |
APA2.glht: Cis |
data |
data.frame wenn x eine Formel ist |
fun, na.action, direction |
eigene Funktion na.action=na.pass |
test, include.test, corr_test, include.p, include.stars |
Sig test bei |
direction |
long or wide |
order, decreasing |
Sortieren Reihenfolge der Sortierung |
use.level |
Benutzter level in Multi zB ja/nein |
include.n, include.all.n, include.header.n, include.total |
N mit ausgeben |
include.total |
Zusammenfassung als Gesamtwert |
include.names, include.labels |
Beschriftung der zeilen |
digits.mean, digits.percent |
Nachkommastellen |
ReferenceZero, labels, na.exclude, labels, include.mean |
Likert: ReferenceZero=2 Neutrales Element in Kombination mit labels = c("low", "neutral", "high") Mittelwerte T/F |
max_factor_length, useconTest, normality.test, test_name, exclude, stars, Formula |
interne Parameter in erate_statistik |
all |
APA2.principal if all=TRUE, then the object is declassed and all output from the function is printed |
suppress.warnings |
APA2.principal Fehlermeldung unterdruecken |
include.fixed, include.random |
Fixed effect and random effects model: |
include.sub |
Subgruppen-Analyse |
include.se, include.ci, include.odds |
SE, 95-Ci, OR noch nicht fertig |
include.r, include.pseudo |
pseudo R |
include.eta |
die Manova wird ueber heplots::etasq berechnet und die anova mit den SS eta2=SS/SS_total |
ci.level |
Ci default 95 Prozent |
include.df |
df mit ausgeben |
LRtests |
an candisc::Wilks Wilks Lambda Tests for Canonical Correlations |
fit_predict |
lda: MASS predict.lda |
newdata |
lda:model.frame |
include.percent, include.count |
ausgabe |
include.margins |
sollen überhaupt Summen (margins) ausgegeben werden die Prozent werden aber wie mit den Margins gerechnet |
margin, add.margins |
alternative zu include.total |
custom.model.names |
Namen ner Modelle |
include.custom |
liste mit Statistiken für Gofs also zB F-Tests |
include.ftest, include.loglik |
noch nicht fertig |
include.aic, include.bic |
geht nur zusammen |
rgroup |
Zwischen Beschriftung |
anova_type |
bei lme: "F" F-werte (wie SPSS) oder Chi (car::Anova) |
caption, note, output, col_names, print_col, labels |
an Output |
test, type |
fischer chi usw |
include.total, include.total.columns, include.total.sub, include.total.rows |
Zeilen Prozenz usw |
html-String ueber cat sowi einen data.frame
liste mit data.frames
invisible data.frame und Output mit html/knit oder Text.
dataframe mit p.werte
data.frame
list(xtab, test)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
require(MatchIt)
require(wakefield)
require(stpvers)
#Projekt("html")
set.seed(0815)
nonMetra <- 702
Metra <- 59
DF3 <- r_data_frame(
n = nonMetra + Metra,
d.age = age,
d.sex = sex,
r.hcv = rnorm,
et.dri = rnorm,
d.dcd = rnorm,
d.steatose = answer
)
#+ results='asis'
DF3$metra <- c(rep(0, nonMetra), rep(1, Metra))
DF3$Metra<- factor(DF3$metra, 0:1, c("non-Metra", "Metra"))
fm <- metra ~ d.age + d.sex + r.hcv + et.dri + d.dcd + d.steatose
#
# m.out <- matchit(fm, data = DF3, method = "nearest")
# APA2(m.out,caption = "Exact Matching ")
# df.match <- match.data(m.out)
# summary(df.match)
m.out0 <- matchit(fm, data = DF3, method = "full")
APA2(m.out0,caption = "Matching method = full")
# m.out1 <- matchit(fm, data = DF3, method = "genetic")
# APA2(m.out1,caption = "Matching method = genetic")
m.out2 <- matchit(fm, data = DF3, method = "optimal", ratio = 1)
APA2(m.out2, caption = "Matching method = optimal, ratio = 1")
#APA2(summary(m.out0, standardize = TRUE))
# plot(m.out0, type = 'jitter', interactive = FALSE)
df.match0 <- match.data(m.out0)
summary(df.match0)
df.match0 %>% Tabelle2(
d.age, d.sex, r.hcv, et.dri, d.dcd, d.steatos,
distance,
weights,
subclass,
by = ~ Metra,
APA = TRUE
)
# df.match1 <- match.data(m.out1)
# summary(df.match1)
# df.match1 %>% Tabelle2(
# d.age, d.sex, r.hcv, et.dri, d.dcd, d.steatos,
# distance,
# weights,
# by = ~ Metra,
# APA = TRUE
# )
df.match2 <- match.data(m.out2)
summary(df.match2)
df.match2 %>% Tabelle2(
d.age, d.sex, r.hcv, et.dri, d.dcd, d.steatos,
distance,
weights,
subclass,
by = ~ Metra,
APA = TRUE
)
#df.match0$subclass
# End()
#-- Corr1
# APA2(~a+b+cd, data)
#stp25stat:::Corr1(data[1:3], dimnames=TRUE)
#stp25stat:::Corr1(data[1:3], dimnames=TRUE, include.p=TRUE)
#-- Corr2
# APA2(a+b+c~d, data )
#stp25APA2:::Corr2(data[1:3], data[4], "pearson", TRUE)
#-- APA2.formula --
require(stp25data)
APA2(chol0+chol1 ~ g, hyper, print.n=FALSE)
APA2(~ g, hyper, caption="Einfache Tabelle")
APA2(chol0+chol1 ~ g, hyper, caption="Spalte mit Characteristik loeschen", print_col=-2)
APA2(gew + rrs0 ~ g, hyper, print.n=FALSE, test=TRUE)
APA2(~chol0+chol1~chol6+chol12, hyper, caption="Korrelation", test=TRUE)
APA2(~chol0+chol1+chol6+chol12, hyper, caption="Korrelation", test=TRUE, stars=FALSE)
#varana <- varana %>% Label(m1="Mesung1", m2="BMI")
x<-APA2( ~m1,varana)
x<-APA2( ~m1+m2,varana)
x<-APA2( m1~geschl,varana)
x<-APA2( m1+m2~alter,varana)
x<-APA2( m1+m2+geschl~alter,varana, include.test = TRUE)
x<-APA2( ~m1+m2+m3+m4,varana, test=TRUE)
library(lmerTest)
fit1 <- lm(chol0 ~ ak + rrs0 + med + g, hyper)
fit2 <- glm(chol0 ~ med + ak + g + rrs0 , hyper, family = poisson())
fit3 <- lmerTest::lmer(chol0 ~ rrs0 + med + ak + (1|g) , hyper )
fits <- list(fit1, fit2, fit3)
APA2(fits,
custom.model.names=c("lm", "glm", "lmer"),
digits= list(c(1,2,3,4,5,6,7),
c(1,2,3,4,5,6,7),
c(1,2,3,4,5,6)),
include.custom=list(
Wald=c("F(1)=245", "F(2)=245","F(3)=245"),
Chi=c("X(4)=2.45", "X(5)=24.5","X(6)=24.5")))
#--- Ordered Logistic or Probit Regression
require(MASS)
# options(contrasts = c("contr.treatment", "contr.poly"))
house.plr <- MASS::polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
APA2(house.plr, note= APA(house.plr))
summary(lm1 <- lm(Fertility ~ ., data = swiss))
slm1 <- stats::step(lm1)
APA2(slm1)
# require(lmerTest)
#m <- lmerTest::lmer(
# Informed.liking ~ Product * Information * Gender +
# (1 | Consumer) + (1 | Product:Consumer),
# data = ham
# )
# elimination of non-significant effects
# s <- lmerTest::step(m)
# APA2(s)
#- manova ---------------------------------------------
## Set orthogonal contrasts.
op <- options(contrasts = c("contr.helmert", "contr.poly"))
## Fake a 2nd response variable
npk2 <- within(npk, foo <- rnorm(24))
npk2 <- within(npk2, foo2 <- rnorm(24))
npk2.aov <- manova(cbind(yield, foo, foo2) ~ block + N * P * K, npk2)
APA2(npk2.aov) #wilks
APA2(npk2.aov, "Pillai")
#npk2.aovE <- manova(cbind(yield, foo) ~ N*P*K + Error(block), npk2)
#APA2(npk2.aovE)
DF<-stp25aggregate::GetData(
"C:/Users/wpete/Dropbox/3_Forschung/R-Project/stp25data/extdata/manova.sav"
)
#information from
DF$GROUP<- factor(DF$GROUP, 1:3, Cs("website", "nurse ", "video tape" ))
#DF %>% Tabelle2(USEFUL, DIFFICULTY, IMPORTANCE, by=~GROUP )
z<- as.matrix(DF[,-1])
fit1<- manova(z ~ DF$GROUP)
APA2(fit1)
summary(fit1)$Eigenvalues
# SPSS
# Multivariate Tests of Significance (S = 2, M = 0, N = 13 )
#
# Test Name Value Approx. F Hypoth. DF Error DF Sig. of F
#
# Pillais .48 3.02 6.00 58.00 .012
# Hotellings .90 4.03 6.00 54.00 .002
# Wilks .53 3.53 6.00 56.00 .005
# Roys .47
# Note.. F statistic for WILKS' Lambda is exact.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Univariate F-tests with (2,30) D. F.
#
# Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F
#
# USEFUL 52.92424 293.96544 26.46212 9.79885 2.70053 .083
# DIFFICUL 3.97515 126.28728 1.98758 4.20958 .47216 .628
# IMPORTAN 81.82969 426.37090 40.91485 14.21236 2.87882 .072
#
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Eigenvalues and Canonical Correlations
#
# Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.
#
# 1 .892 99.416 99.416 .687
# 2 .005 .584 100.000 .072
#
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#-- LDA -------------------------
library(MASS)
require(stp25output)
DF2 <- stp25aggregate::GetData(
"C:/Users/wpete/Dropbox/3_Forschung/R-Project/stp25data/extdata/discrim.sav")
#--https://stats.idre.ucla.edu/spss/dae/discriminant-function-analysis/
DF2$Job <- factor(DF2$JOB, 1:3, Cs("customer service", "mechanic","dispatcher"))
DF2$Job2 <- factor(DF2$JOB, c(2,3,1), Cs( "mechanic","dispatcher","customer service"))
#APA2(.~JOB ,DF2)
#DF2 %>% APA_Correlation(OUTDOOR,SOCIAL,CONSERVATIVE )
fit2 <- lda(Job ~ OUTDOOR+SOCIAL+CONSERVATIVE, data=DF2)
fit3 <- lda(Job2 ~ OUTDOOR+SOCIAL+CONSERVATIVE, data=DF2)
APA2(fit2)
APA2(fit3)
#' #fit2 <- lda(GROUP ~ ., data=DF )
#APA2(fit2)
#plot(fit2)
#----------------------------------------------------------------
# multcomp
#----------------------------------------------------------------
#require(graphics)
#
#-- breaks ~ wool + tension ----------------------
#warpbreaks %>% Tabelle2(breaks, by= ~ wool + tension)
summary(fm1 <- aov(breaks ~ wool + tension, data = warpbreaks))
# ANOVA
APA2(fm1, caption="ANOVA")
# TukeyHSD
TukeyHSD(fm1, "tension", ordered = TRUE) %>%
APA_Table(caption="TukeyHSD" )
#plot(TukeyHSD(fm1, "tension"))
#levels(warpbreaks$tension)
# Lm Split
fm1_split <- summary(fm1,
split=list(tension=list( M=1, H=3, L=2)),
expand.split=FALSE)
APA2(fm1_split)
# Multcomp
require(multcomp)
fit_Tukey <-glht(fm1,
linfct=mcp(tension="Tukey"),
alternative = "less"
)
APA_Table(fit_Tukey, caption="APA_Table: multcomp mcp Tukey")
APA2(fit_Tukey, caption="APA2: multcomp mcp Tukey")
### contrasts for `tension'
K <- rbind("L - M" = c( 1, -1, 0),
"M - L" = c(-1, 1, 0),
"L - H" = c( 1, 0, -1),
"M - H" = c( 0, 1, -1))
warpbreaks.mc <- glht(fm1,
linfct = mcp(tension = K),
alternative = "less")
APA2(warpbreaks.mc, caption="APA2: multcomp mcp mit Contrasten")
### correlation of first two tests is -1
cov2cor(vcov(fm1))
### use smallest of the two one-sided
### p-value as two-sided p-value -> 0.0232
summary(fm1)
# -- Interaction ------------------------
summary(fm2 <- aov(breaks ~ wool * tension, data = warpbreaks))
APA_Table(fm2)
x <- TukeyHSD(fm2, "tension",
ordered = TRUE)
APA2(x, caption="Interaction: TukeyHSD" )
warpbreaks$WW<-interaction(warpbreaks$wool,warpbreaks$tension )
mod2<-aov(breaks~WW, warpbreaks)
APA2(mod2, caption="ANOVA interaction haendich zu den Daten hinzugefuehgt")
library(multcomp)
### multiple linear model, swiss data
lmod <- lm(Fertility ~ ., data = swiss)
### test of H_0: all regression coefficients are zero
### (ignore intercept)
### define coefficients of linear function directly
K <- diag(length(coef(lmod)))[-1,]
rownames(K) <- names(coef(lmod))[-1]
K
### set up general linear hypothesis
APA2(glht(lmod, linfct = K))
#- ANOVA ---------
# op <- options(contrasts = c("contr.helmert", "contr.poly"))
# npk.aov <- aov(yield ~ block + N*P*K, npk)
#summary(npk.aov)
#coefficients(npk.aov)
#APA2(npk.aov, include.eta = FALSE)
#- One way repeated Measures ---------------------
#datafilename="http://personality-project.org/r/datasets/R.appendix3.data"
#data.ex3=read.table(datafilename,header=T) #read the data into a table
# #data.ex3 #show the data
#aov.ex3 = aov(Recall~Valence+Error(Subject/Valence),data.ex3)
#
#APA2(aov.ex3)
#' library(caret)
require(epiR)
DF<- GetData("
GoldStandart RT.qPCR Anzahl
positiv positiv 111
positiv negativ 12
negativ positiv 1
negativ negativ 62 ", Tabel_Expand =TRUE, id.vars=1:2, output=FALSE)
DF$GoldStandart<- factor( DF$GoldStandart, rev(levels( DF$GoldStandart)))
DF$RT.qPCR<- factor( DF$RT.qPCR, rev(levels( DF$RT.qPCR)))
dat <- as.table(matrix(c(111, 12, 1, 62), nrow = 2, byrow = TRUE))
colnames(dat) <- c("RT.qPCR +", "RT.qPCR -")
rownames(dat) <- c("Gold Standart +", "GoldStandart -")
rval <- epi.tests(dat, conf.level = 0.95)
APA2(rval)
# Fit Log-Linear Models by Iterative Proportional Scaling
library(MASS)
fit<-loglm(~ Type + Origin, xtabs(~ Type + Origin, Cars93))
APA2(fit)
#-- APA2.summary.table
a <- letters[1:3]
APA2(summary(table(a, sample(a))))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.