Description Usage Arguments Value Examples
APA_ICC:Intra-Klassen-Korrelation (mit psych).
APA_Ttest: Berechnung von Mittelwerten und Mittelwertdifferenzen und des T-Test.
APA_Correlation: Korrelationstabelle (Interkorrelationen mit der Hilfe der Funktion Hmisc::rcorr. Erlaubt ist die getrennte Auswertung ueber by=~b
Wird in APA2 verwendet Tabelle Arbeitet mit Multi2default() und hat anderen Rueckgabewert als Tabelle (Mittelverte vs String)
APA_PCA: Faktoranalyse wie SPSS PCA
APA_R2: R2-Tabelle (noch nicht fretig)
Kreuztabellen cross-tabulation, APA_Xtabs, APA2.xtabs : Die Funktion Formatiert xtabs() mit NxM und NxMxO Tabellen.
"Haufigkeit/Prozent 1"
Die Prozent werden ueber include.percent mit margin erstellt. Der Parameter
add.margins wird automatisch vergeben.
include.total, include.total.columns, include.total.sub, include.total.rows, include.percent,
include.count.
Feineinstellungen erfolgt ueber margin = 2
).
"Sensitivitaets Analyse"Nur bei 2x" Tabellen ueber test=TRUE
"Sig.-Tests"Bei 2x" Tabellen Fischer sonst Chi-test. Die Berechnung erfolgt hier mit assocstats. Weiter Einstellungen sind Correlationen, Pearson, Kontingentkoeffizient berechnet alternativ steht auch der Phi-Coefficient
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | APA_ICC(
...,
caption = "ICC",
note = "",
type = c(1, 4),
output = which_output()
)
APA_Ttest(
x,
data,
caption = "T Test",
note = paste(type, alternative),
output = stp25output::which_output(),
var.equal = FALSE,
paired = FALSE,
alternative = "two.sided",
include.mean = TRUE,
include.d = TRUE,
include.mean.diff = TRUE,
include.se = FALSE,
include.n = FALSE,
type = "t.test",
digits = 2,
random = NULL,
...
)
APA_Correlation(
...,
caption = "Korrelation",
note = "",
output = which_output(),
col_names = NULL,
cor_diagonale_up = TRUE,
type = c("pearson", "spearman"),
include.mean = FALSE,
include.n = TRUE,
stars = TRUE,
p.value = FALSE,
include.stars = stars,
include.p = p.value
)
Hmisc_rcorr(
...,
cor_diagonale_up = TRUE,
include.stars = TRUE,
include.p = FALSE,
include.mean = FALSE,
include.n = TRUE,
type = c("pearson", "spearman"),
caption = "",
note = ""
)
APA_NULL(x, ...)
APA_Likert(...)
APA2_multiresponse(
Formula,
data,
caption = "",
note = "",
test = FALSE,
order = FALSE,
decreasing = TRUE,
sig_test = "fischer.test",
na.action = na.pass,
use.level = 1,
output = which_output(),
...
)
APA_PCA(
data,
...,
include.pca = TRUE,
include.loading = include.pca,
include.test = include.pca,
include.plot = FALSE,
include.kmo = TRUE,
w = 5,
h = 5,
opene_graphic_device = FALSE,
save_graphic = opene_graphic_device,
caption = "Standardized loadings (pattern matrix) based upon correlation matrix",
note = "",
output = which_output(),
main = ""
)
APA_Reliability(..., caption = "", note = "", output = which_output())
APA_R2(..., caption, note)
APA_Xtabs(x, ...)
## S3 method for class 'glm'
APA_Xtabs(
x,
caption = "",
output = stp25output::which_output(),
thresh = 0.5,
...
)
## S3 method for class 'formula'
APA_Xtabs(
x,
data = NULL,
caption = "",
note = "",
output = stp25output::which_output(),
labels = TRUE,
addNA = FALSE,
exclude = if (!addNA) c(NA, NaN),
drop.unused.levels = FALSE,
...
)
## S3 method for class 'xtabs'
APA_Xtabs(x, ...)
## Default S3 method:
APA_Xtabs(x, ...)
|
... |
extra arguments |
caption, note |
Ueberschrift an Output |
type |
enweder "pearson" oder "spearman" |
output |
Html oder Text |
x |
An object to be converted into a tidy data.frame or Formula |
data |
data.frame wenn x eine Formel ist |
var.equal, paired, alternative |
an t.Test var.equal = FALSE "two.sided" |
include.mean |
Mittelwerte |
include.d |
Cohens d |
include.mean.diff |
Mittlere Differenzen |
include.se |
Standardfehler noch nicht Fertig |
include.n |
Anzahl an gueltigen Werten |
digits |
Nachkommastellen |
random |
formula bei paired muss zwingend eine eindeutige id oder Fallnummer vorhanden sein |
col_names |
nicht benutzt |
cor_diagonale_up |
Diagonale oben oder unter |
include.stars |
Sternchen als p-Werte |
include.p |
Explizite p-Werte |
Formula, test, order, decreasing, sig_test, na.action |
Interne Parameter |
include.pca, include.loading, include.test, include.plot, include.kmo |
was soll ausgegeben werden |
w, h, main, opene_graphic_device, save_graphic |
Fenster w=5 h=5 Ueberschrift |
addNA, exclude, drop.unused.levels |
An xtabs() default = FALSE |
a data.frame or list with data.frame
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
APA_Ttest(m1+m2 ~ geschl, varana)
varanax<-Melt2(m1+m2~nr,varana , key="time", value="m")
# broom::tidy(with(varana, t.test(m1,m2 ) ))
# broom::tidy( t.test(m~time, varanax, var.equal=FALSE)) )
APA_Ttest(m~time, varanax, paired = TRUE)
APA_Ttest(m~time, varanax, var.equal=TRUE)
APA_Ttest(m~time, varanax, var.equal=FALSE)
#broom::tidy(t.test(m~time, varanax, var.equal=TRUE))
#broom::tidy(t.test(m~time, varanax, var.equal=FALSE))
varanax$m[1] <- NA
APA_Ttest(m ~ time, varanax, paired = TRUE, random=~nr, include.n=TRUE)
n <- 2 * 20
e <- rnorm(n)
dat <- stp25aggregate::Label(
data.frame(
a = rnorm(n) + e / 2,
b = rnorm(n) + e,
c = rnorm(n),
d = rnorm(n) + e * 10,
g = gl(2, 20, labels = c("Control", "Treat"))
),
a = "Alpha",
b = "Beta",
c = "Gamma"
)
APA_Correlation( ~ a + b + c, dat)
APA_Correlation(a ~ c, dat)
APA_Correlation(a + b + c ~ d, dat)
APA_Correlation(a + b ~ c + d, dat)
APA_Correlation(a + b + c ~ d, dat, groups = ~ g)
APA_Correlation( ~ a + b + c, dat)
APA_Correlation( ~ a + b + c, dat, include.p = TRUE)
APA_Correlation( ~ a + b + c, dat, include.p = TRUE, include.stars = FALSE)
# library(arm)
# windows(7,7)
# corrplot(data[Cs(a,b,c,d)], abs=TRUE, n.col.legend=7)
# install.packages("PerformanceAnalytics")
#library("PerformanceAnalytics")
#?chart.Correlation#(decathlon2.active[, 1:6], histogram=TRUE, pch=19)
#data(managers)
#chart.Correlation(managers[,1:8], histogram=TRUE, pch="+")
fit1<-lm(score ~ grade + treatment, schools)
fit2<-lm(score ~ grade + treatment + stdTest, schools)
APA_R2(fit1, fit2)
DF <- GetData(
"
GoldStandart Schnell.Test Anzahl
positiv positiv 124
positiv negativ 9
negativ positiv 20
negativ negativ 305 ",
Tabel_Expand = TRUE,
id.vars = 1:2,
output = FALSE
)
DF <- transform(
DF,
GoldStandart = factor(GoldStandart, rev(levels(DF$GoldStandart))),
Schnell.Test = factor(Schnell.Test, rev(levels(DF$Schnell.Test)))
)
DF<- Label(DF, GoldStandart="Krank Covid-19", Schnell.Test= "Schnell Test GTV8")
N<- nrow(DF)
xtb <- xtabs( ~ Schnell.Test + GoldStandart , DF)
APA_Xtabs(xtb)
APA_Xtabs( ~ Schnell.Test + GoldStandart,
DF,
caption = "2x2 Tabelle zur Destimmung der Kennwerte",
include.percent = FALSE,
include.total=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.