#' `genedrop_multi()`: Conduct a genedrop simulation for a multi-allelic locus.
#'
#' This function conducts a genedrop simulation for a single bi-allelic locus
#' (e.g. a SNP). For biallelic loci (e.g. SNPs), please use `genedrop_snp()`. At
#' present, this package does not support sex-linked multi-allelic loci. Before
#' running this function, users should first summarise and visualise their data
#' using `summary_cohort()` to determine an appropriate value for
#' `n_founder_cohorts`. This function will return an object that contains the
#' cohort allele frequences in the observed and simulated datasets. Overall
#' results of directional and balancing selection can be observed using
#' `summary()`. For more detail on specifying model parameters, please consult
#' the tutorial at https://github.com/susjoh/genedroppeR.
#'
#' @param id vector. Individual IDs
#' @param mother vector. Maternal IDs corresponding to id.
#' @param father vector. Paternal IDs corresponding to id.
#' @param cohort vector (optional). Cohort number (e.g. birth year)
#' corresponding to the id. Must be consecutive integers.
#' @param genotype vector. Genotype IDs corresponding to id.
#' @param genotype_delim char. A character denoting the genotype delimited.
#' Default = "".
#' @param nsim integer. Number of genedrop simulations to run.
#' @param n_founder_cohorts integer. The number of cohorts at the top of the
#' pedigree that will sample from the true allele frequences (these are
#' defined as "sampled"). All cohorts following these ones are "simulated" and
#' are used for comparisons of changes in allele frequency.
#' @param fix_founders logical. Default = TRUE. Determines whether individuals
#' in founder cohorts should be given their true recorded genotypes (if
#' known). For individuals with no known genotype, their genotypes are sampled
#' based on the observed cohort allele frequency. If FALSE, then all IDs are
#' sampled based on the cohort allele frequencies.
#' @param resample_offspring logical. Default = FALSE. If FALSE, the same
#' pedigree structure as the observed pedigree is used. If TRUE, then
#' offspring are resampled across parents in each cohort. This is to remove
#' any potential signal where prolific individuals tend to have prolific
#' offspring, but will also mean that pedigrees are not directly comparable.
#' @param verbose logical. Output the progress of the run.
#' @param interval int. Default 100. Output progress every 100 simulations.
#' @param remove_founders Default = TRUE. If TRUE, then the founder cohorts will
#' be removed from calculations of directional and cumulative change.
#' @param return_full_results Default = NULL. This will also output tables of
#' all individually simulated genotypes.
#' @examples
#' data(unicorn)
#' sub_unicorn <- subset(unicorn, cohort < 2010)
#' genedrop_obj <- genedrop_multi(
#' id = sub_unicorn$id,
#' mother = sub_unicorn$mother,
#' father = sub_unicorn$father,
#' cohort = sub_unicorn$cohort,
#' genotype = sub_unicorn$MHC,
#' nsim = 10,
#' n_founder_cohorts = 4,
#' fix_founders = TRUE,
#' verbose = TRUE,
#' interval = 1,
#' resample_offspring = FALSE
#' )
#'
#' summary_genedrop(genedrop_obj)
#' plot_genedrop(genedrop_obj)
#' @returns an output object of class "genedroppeR"
#' @export
genedrop_multi <- function(id,
mother,
father,
cohort = NULL,
genotype,
genotype_delim = "",
nsim,
n_founder_cohorts = 1,
fix_founders = TRUE,
verbose = TRUE,
interval = 100,
resample_offspring = FALSE,
remove_founders = TRUE,
return_full_results = NULL) {
Cohort <- Simulation <- p <- NULL
# Format the data
ped <- check_data(id, mother, father, cohort, genotype, multiallelic = TRUE)$ped
rm(id, mother, father, cohort, genotype)
# Get the observed population frequency information #
# Get the individual allele counts.
y <- subset(ped, select = c(genotype, cohort))
y$genotype <- as.character(y$genotype)
y$Allele1 <- sapply(y$genotype, function(foo) {
strsplit(foo, split = genotype_delim, fixed = T)[[1]][1]
})
y$Allele2 <- sapply(y$genotype, function(foo) {
strsplit(foo, split = genotype_delim, fixed = T)[[1]][2]
})
y <- melt(y, id.vars = c("genotype", "cohort"))
x.allele <- sort(unique(y$value))
x <- table(y$cohort, y$value, useNA = "always")
x <- matrix(x, ncol = ncol(x), dimnames = dimnames(x))
if (any(is.na(row.names(x)))) x <- x[-which(is.na(row.names(x))), ]
x <- cbind(data.frame(cohort = row.names(x)), x)
x$GenoCount <- rowSums(x[, 2:(ncol(x) - 1)])
x$FullCount <- rowSums(x[, 2:(ncol(x) - 1)])
for (i in x.allele) x[, i] <- x[, i] / x$GenoCount
# Sample the genotypes in the founder cohorts
# If founders are fixed, determine which IDs are founders!
if (fix_founders == T) {
fixed_founders <- subset(ped, cohort %in% x$cohort[1:n_founder_cohorts] & !is.na(genotype))$ID
} else {
fixed_founders <- NULL
}
# index the pedigree
row.names(ped) <- ped$ID
# Create columns for parentally inherited alleles and add some for the founders
ped$Mum.Allele <- NA
ped$Dad.Allele <- NA
ped$Mum.Allele <- sapply(ped$genotype, function(foo) strsplit(foo, split = genotype_delim, fixed = T)[[1]][1])
ped$Dad.Allele <- sapply(ped$genotype, function(foo) strsplit(foo, split = genotype_delim, fixed = T)[[1]][2])
ped$Mum.Allele[which(ped$cohort %in% x$cohort[(n_founder_cohorts + 1):nrow(x)])] <- NA
ped$Dad.Allele[which(ped$cohort %in% x$cohort[(n_founder_cohorts + 1):nrow(x)])] <- NA
ped$ID <- as.character(ped$ID)
ped$MOTHER <- as.character(ped$MOTHER)
ped$FATHER <- as.character(ped$FATHER)
# Create a list to save results
ped.hold <- ped
sim.list <- list()
for (simulation in 1:nsim) {
if (verbose) {
if (simulation %in% seq(1, nsim, interval)) {
message(paste0("Running simulation ", simulation, " of ", nsim, "."))
}
}
if (resample_offspring) {
ped <- resample_offspring_func(ped.hold)
} else {
ped <- ped.hold
}
# Create a data frame with space for the results
haplo.frame <- ped
# Sample the founders
for (h in 1:n_founder_cohorts) {
y1 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$MOTHER) & !haplo.frame$ID %in% fixed_founders)
if (length(y1) > 0) {
haplo.frame$Mum.Allele[y1] <- apply(
haplo.frame[haplo.frame$MOTHER[y1], c("Mum.Allele", "Dad.Allele")],
1,
function(y) y[((runif(1) > 0.5) + 1L)]
)
}
y2 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$FATHER) & !haplo.frame$ID %in% fixed_founders)
if (length(y2) > 0) {
haplo.frame$Dad.Allele[y2] <- apply(
haplo.frame[haplo.frame$FATHER[y2], c("Mum.Allele", "Dad.Allele")],
1,
function(y) y[((runif(1) > 0.5) + 1L)]
)
}
y3 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$Mum.Allele))
if (length(y3) > 0) haplo.frame$Mum.Allele[y3] <- sapply(y3, function(y) sample(x.allele, size = 1, prob = x[h, x.allele]))
y4 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$Dad.Allele))
if (length(y4) > 0) haplo.frame$Dad.Allele[y4] <- sapply(y4, function(y) sample(x.allele, size = 1, prob = x[h, x.allele]))
rm(y1, y2, y3, y4)
}
# sample the rest
for (h in (n_founder_cohorts + 1):nrow(x)) {
y1 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$MOTHER))
if (length(y1) > 0) {
haplo.frame$Mum.Allele[y1] <- apply(
haplo.frame[haplo.frame$MOTHER[y1], c("Mum.Allele", "Dad.Allele")],
1,
function(y) y[((runif(1) > 0.5) + 1L)]
)
}
y2 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$FATHER))
if (length(y2) > 0) {
haplo.frame$Dad.Allele[y2] <- apply(
haplo.frame[haplo.frame$FATHER[y2], c("Mum.Allele", "Dad.Allele")],
1,
function(y) y[((runif(1) > 0.5) + 1L)]
)
}
# Get allele frequencies
temp.freq <- data.frame(table(c(haplo.frame$Mum.Allele[y1], haplo.frame$Dad.Allele[y2])))
temp.freq$Freq <- temp.freq$Freq / sum(temp.freq$Freq)
temp.freq$Var1 <- as.character(temp.freq$Var1)
y3 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$MOTHER))
if (length(y3) > 0) haplo.frame$Mum.Allele[y3] <- sapply(y3, function(y) sample(temp.freq$Var1, size = 1, prob = temp.freq$Freq))
y4 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$FATHER))
if (length(y4) > 0) haplo.frame$Dad.Allele[y4] <- sapply(y4, function(y) sample(temp.freq$Var1, size = 1, prob = temp.freq$Freq))
rm(y1, y2, y3, y4)
}
haplo.frame$MOTHER <- NULL
haplo.frame$FATHER <- NULL
haplo.frame$Simulation <- simulation
sim.list[[simulation]] <- haplo.frame
rm(haplo.frame, h)
}
sim.results <- bind_rows(sim.list)
sim.results$Simulated.Geno <- paste0(sim.results$Mum.Allele, genotype_delim, sim.results$Dad.Allele)
names(sim.results)[names(sim.results) == "genotype"] <- "True.Geno"
if (!is.null(return_full_results)) return_full_results <- sim.results
genedrop_obj <- process_genedrop(sim.results)
# Calculate selection
genedrop_obj$simulated_frequencies$Simulation <- as.numeric(as.character(genedrop_obj$simulated_frequencies$Simulation))
genedrop_obj$simulated_frequencies$Cohort <- as.numeric(as.character(genedrop_obj$simulated_frequencies$Cohort))
genedrop_obj$observed_frequencies$Simulation <- as.numeric(as.character(genedrop_obj$observed_frequencies$Simulation))
genedrop_obj$observed_frequencies$Cohort <- as.numeric(as.character(genedrop_obj$observed_frequencies$Cohort))
sim_freq_hold <- genedrop_obj$simulated_frequencies
obs_freq_hold <- genedrop_obj$observed_frequencies
if (remove_founders) {
if (length(n_founder_cohorts) == 1) {
genedrop_obj$simulated_frequencies <-
filter(
genedrop_obj$simulated_frequencies,
!Cohort %in% unique(sort(genedrop_obj$simulated_frequencies$Cohort))[1:n_founder_cohorts]
)
genedrop_obj$observed_frequencies <-
filter(
genedrop_obj$observed_frequencies,
!Cohort %in% unique(sort(genedrop_obj$observed_frequencies$Cohort))[1:n_founder_cohorts]
)
}
}
if ("Allele" %in% names(genedrop_obj$simulated_frequencies)) {
Allele <- unique(genedrop_obj$simulated_frequencies$Allele)
} else {
sim_freq_hold$Allele <- "p"
obs_freq_hold$Allele <- "p"
genedrop_obj$simulated_frequencies$Allele <- "p"
genedrop_obj$observed_frequencies$Allele <- "p"
}
suppressMessages({
sim.slopes <- genedrop_obj$simulated_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = lm(p ~ Cohort)$coefficients[[2]])
true.slopes <- genedrop_obj$observed_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = lm(p ~ Cohort)$coefficients[[2]])
cumu.func <- function(x) {
x <- diff(x)
x <- ifelse(x < 0, x * -1, x)
sum(x, na.rm = F)
}
sim.changes <- genedrop_obj$simulated_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = cumu.func(p))
true.changes <- genedrop_obj$observed_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = cumu.func(p))
})
true.slopes$Estimates.Lower <- NA
true.slopes$Estimates.Higher <- NA
for (i in 1:nrow(true.slopes)) {
true.slopes$Estimates.Lower[i] <- length(which(sim.slopes$Allele == true.slopes$Allele[i] &
sim.slopes$Estimate < true.slopes$Estimate[i]))
true.slopes$Estimates.Higher[i] <- length(which(sim.slopes$Allele == true.slopes$Allele[i] &
sim.slopes$Estimate > true.slopes$Estimate[i]))
}
true.changes$Estimates.Lower <- NA
true.changes$Estimates.Higher <- NA
for (i in 1:nrow(true.changes)) {
true.changes$Estimates.Lower[i] <- length(which(sim.changes$Allele == true.changes$Allele[i] &
sim.changes$Estimate < true.changes$Estimate[i]))
true.changes$Estimates.Higher[i] <- length(which(sim.changes$Allele == true.changes$Allele[i] &
sim.changes$Estimate > true.changes$Estimate[i]))
}
# Table the results
true.changes$Analysis <- "Cumulative Change"
true.slopes$Analysis <- "Directional Change"
restab <- rbind(true.changes, true.slopes)
restab$Simulation <- nsim
names(restab)[1] <- "Simulations"
restab <- restab[, c("Analysis", "Allele", "Estimate", "Estimates.Lower", "Estimates.Higher", "Simulations")]
# Return results
sim.results <- list(
results = restab,
observed_frequencies = obs_freq_hold,
simulated_frequencies = sim_freq_hold,
full_results = return_full_results,
n_founder_cohorts = n_founder_cohorts,
remove_founders = remove_founders,
fix_founders = fix_founders,
resample_offspring = resample_offspring,
slopes = list(
true.slopes = true.slopes,
sim.slopes = sim.slopes
),
cumulative_change = list(
true.changes = true.changes,
sim.changes = sim.changes
)
)
class(sim.results) <- "genedroppeR"
sim.results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.