#' `genedrop_snp_sexlinked()`: Conduct a genedrop simulation for a sex-linked
#' biallelic locus.
#'
#' This function conducts a genedrop simulation for a single, sex-linked
#' bi-allelic locus (e.g. a, X- or Z-linked SNP). For autosomal loci, use
#' `genedrop_snp()`. Before running this function, users should first summarise
#' and visualise their data using `summary_cohort()` to determine an appropriate
#' value for `n_founder_cohorts`. This function will return an object that
#' contains the cohort allele frequences in the observed and simulated datasets.
#' Overall results of directional and balancing selection can be observed using
#' `summary()`. For more detail on specifying model parameters, please consult
#' the tutorial at https://github.com/susjoh/genedroppeR.
#'
#' @param id vector. Individual IDs
#' @param mother vector. Maternal IDs corresponding to id.
#' @param father vector. Paternal IDs corresponding to id.
#' @param cohort vector (optional). Cohort number (e.g. birth year)
#' corresponding to the id.
#' @param sex vector. Sexes corresponding to id. 1 is the homogametic sex (e.g.
#' XY, ZW) and 2 is the heterogametic sex (e.g. XX, ZZ)
#' @param genotype vector. Genotypes corresponding to id.
#' @param nsim integer. Number of genedrop simulations to run.
#' @param n_founder_cohorts integer. The number of cohorts at the top of the
#' pedigree that will sample from the true allele frequencies (these are
#' defined as "sampled"). All cohorts following these ones are "simulated" and
#' are used for comparisons of changes in allele frequency.
#' @param fix_founders logical. Default = TRUE. Determines whether individuals
#' in founder cohorts should be given their true recorded genotypes (if
#' known). For individuals with no known genotype, their genotypes are sampled
#' based on the observed cohort allele frequency. If FALSE, then all IDs are
#' sampled based on the cohort allele frequencies.
#' @param resample_offspring logical. Default = FALSE. If FALSE, the same
#' pedigree structure as the observed pedigree is used. If TRUE, then
#' offspring are resampled across parents in each cohort. This is to remove
#' any potential signal where prolific individuals tend to have prolific
#' offspring, but will also mean that pedigrees are not directly comparable.
#' @param remove_founders Default = TRUE. If TRUE, then the founder cohorts will
#' be removed from calculations of directional and cumulative change.
#' @param return_full_results Default = NULL. This will also output tables of
#' all individually simulated genotypes.
#' @param verbose logical. Default = TRUE. Output the progress of the run.
#' @param interval integer. Default 100. Output progress every 100 simulations.
#' @examples
#' data(unicorn)
#' sub_unicorn <- subset(unicorn, sex %in% c(1, 2))
#' genedrop_obj <- genedrop_snp_sex(
#' id = sub_unicorn$id,
#' mother = sub_unicorn$mother,
#' father = sub_unicorn$father,
#' cohort = sub_unicorn$cohort,
#' genotype = sub_unicorn$Xlinked,
#' sex = sub_unicorn$sex,
#' nsim = 100,
#' n_founder_cohorts = 4,
#' fix_founders = TRUE,
#' verbose = TRUE,
#' interval = 10
#' )
#' summary_genedrop(genedrop_obj)
#' plot_genedrop(genedrop_obj)
#' @returns an output object of class "genedroppeR"
#' @export
genedrop_snp_sex <- function(id,
mother,
father,
cohort = NULL,
genotype,
sex,
nsim,
n_founder_cohorts = 1,
fix_founders = TRUE,
verbose = TRUE,
interval = 100,
resample_offspring = FALSE,
remove_founders = TRUE,
return_full_results = NULL) {
Hom.Parent.Allele <- Het.Parent.Allele <- Cohort <- Simulation <- p <- NULL
# Check the data and obtain ped object
ped_check <- check_data(id, mother, father, cohort, genotype, sex)
ped <- ped_check$ped
sex_system <- ped_check$sex_system
rm(id, mother, father, cohort, genotype, sex, ped_check)
# ~~ Recode to Het and Hom parent.
if (sex_system == "XY") {
ped$HET_Parent <- ped$FATHER
ped$HOM_Parent <- ped$MOTHER
} else {
ped$HET_Parent <- ped$MOTHER
ped$HOM_Parent <- ped$FATHER
}
# deal with heterogametic sex errors
heterrors <- which(ped$genotype == 1 & ped$sex == 1)
if (length(heterrors) > 0) {
message(paste0("Removed ", length(heterrors), " heterozygous genotypes in ", sex_system, " ids (", round(((length(heterrors) / length(which(ped$sex == 1))) * 100), 3), "%)."))
ped$genotype[heterrors] <- NA
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# Get the observed population frequency information
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# ~~ Summarise the genotype counts per cohort
x <- table(ped$cohort, ped$genotype, useNA = "always")
x <- matrix(x, ncol = ncol(x), dimnames = dimnames(x))
if (any(is.na(row.names(x)))) x <- x[-which(is.na(row.names(x))), ]
x <- cbind(data.frame(cohort = row.names(x)), x)
names(x)[ncol(x)] <- "NA"
x$GenoCount <- rowSums(x[, 2:(ncol(x) - 1)])
x$FullCount <- rowSums(x[, 2:(ncol(x) - 1)])
x$PropGenotyped <- x$GenoCount / x$FullCount
x$cohort <- as.character(x$cohort)
# ~~ Add any missing genotype columns
if (is.null(x$`0`)) x$`0` <- 0
if (is.null(x$`1`)) x$`1` <- 0
if (is.null(x$`2`)) x$`2` <- 0
x$p <- (x$`0` + 0.5 * (x$`1`)) / x$GenoCount
# Find cohorts with no representation and throw error
badcohorts <- x$cohort[which(is.na(x[, 2]))]
if (length(badcohorts) > 0) {
stop(paste0("Cohorts ", paste(badcohorts, collapse = ", "), " have no genotyped individuals."))
}
# ~~ Create a list to save results
ped.hold <- ped
sim.list <- list()
# ~~ Run the simulations
for (simulation in 1:nsim) {
if (verbose) {
if (simulation %in% seq(1, nsim, interval)) {
message(paste0("Running simulation ", simulation, " of ", nsim, "."))
}
}
if (resample_offspring) {
ped <- resample_offspring_func(ped.hold)
} else {
ped <- ped.hold
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# Sample the genotypes in the founder cohorts
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# ~~ index the pedigree
row.names(ped) <- ped$ID
# ~~ Create columns for parentally inherited alleles and add alleles for all
# individuals that are in the founder cohorts.
ped$Hom.Parent.Allele <- NA
ped$Het.Parent.Allele <- NA
if (fix_founders) {
# Generate alleles
ped$Hom.Parent.Allele <- ifelse(ped$genotype %in% 0:1, 0, ifelse(is.na(ped$genotype), NA, 1))
ped$Het.Parent.Allele <- ifelse(ped$genotype %in% 0, 0, ifelse(is.na(ped$genotype), NA, 1))
# Blank out anything that is not in the founder cohorts
ped$Hom.Parent.Allele[which(ped$cohort %in% x$cohort[(n_founder_cohorts + 1):nrow(x)])] <- NA
ped$Het.Parent.Allele[which(ped$cohort %in% x$cohort[(n_founder_cohorts + 1):nrow(x)])] <- NA
# Blank out founders that have to inherit an allele from a parent
ped$Hom.Parent.Allele[which(!is.na(ped$HOM_Parent))] <- NA
ped$Het.Parent.Allele[which(!is.na(ped$HET_Parent))] <- NA
}
# Convert to character
ped$ID <- as.character(ped$ID)
ped$HOM_Parent <- as.character(ped$HOM_Parent)
ped$HET_Parent <- as.character(ped$HET_Parent)
# ~~ Create a data frame with space for the results
haplo.frame <- ped
# ~~ Sample the founders
for (h in 1:n_founder_cohorts) {
# HOM_Parent is known
y1 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$HOM_Parent))
if (length(y1) > 0) {
haplo.frame$Hom.Parent.Allele[y1] <- apply(
haplo.frame[haplo.frame$HOM_Parent[y1], c("Hom.Parent.Allele", "Het.Parent.Allele")],
1,
function(y) y[((runif(1) > 0.5) + 1L)]
)
}
# HET_Parent is known
y2 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$HET_Parent) & haplo.frame$sex == 2)
if (length(y2) > 0) haplo.frame$Het.Parent.Allele[y2] <- haplo.frame[haplo.frame$HET_Parent[y2], "Hom.Parent.Allele"]
# HOM_Parent allele is not known - sample from cohort frequency
y3 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$Hom.Parent.Allele))
if (length(y3) > 0) {
haplo.frame$Hom.Parent.Allele[y3] <- sapply(y3, function(y) ((runif(1) > x$p[h]) + 0L))
}
# HET_Parent allele is not known - sample from cohort frequency
y4 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$Het.Parent.Allele) & haplo.frame$sex == 2)
if (length(y4) > 0) {
haplo.frame$Het.Parent.Allele[y4] <- sapply(y4, function(y) ((runif(1) > x$p[h]) + 0L))
}
# Which heterogametics have a value for their heterogametic parent? Make them have the same as their homogametic parent
haplo.frame$Het.Parent.Allele[which(haplo.frame$sex == 1)] <- NA
rm(y1, y2, y3, y4)
}
# ~~ Calculate the cohort frequencies
cohort.freqs <- haplo.frame %>%
group_by(cohort) %>%
summarise(
Sum = sum(Hom.Parent.Allele, Het.Parent.Allele, na.rm = T),
Count = length(na.omit(c(Hom.Parent.Allele, Het.Parent.Allele)))
)
cohort.freqs$p <- 1 - (cohort.freqs$Sum / (cohort.freqs$Count * 2))
cohort.freqs$Sum <- NULL
cohort.freqs$Count <- NULL
# ~~ sample the rest
for (h in (n_founder_cohorts + 1):nrow(x)) {
# HOM_Parent is known
y1 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$HOM_Parent))
if (length(y1) > 0) {
haplo.frame$Hom.Parent.Allele[y1] <- apply(
haplo.frame[haplo.frame$HOM_Parent[y1], c("Hom.Parent.Allele", "Het.Parent.Allele")],
1,
function(y) y[((runif(1) > 0.5) + 1L)]
)
}
# HET_Parent is known
y2 <- which(haplo.frame$cohort == x$cohort[h] & !is.na(haplo.frame$HET_Parent) & haplo.frame$sex == 2)
if (length(y2) > 0) haplo.frame$Het.Parent.Allele[y2] <- haplo.frame[haplo.frame$HET_Parent[y2], "Hom.Parent.Allele"]
# Estimate the allele frequency
cohort.freqs$p[h] <- 1 - (sum(haplo.frame$Hom.Parent.Allele[y1]) + sum(haplo.frame$Het.Parent.Allele[y2])) / (length(y1) + length(y2))
if (is.na(cohort.freqs$p[h])) {
stop(paste("Cohort frequency can't be estimated. Problem simulation", simulation, "generation", h))
}
# Now sample IDs with missing HOM_Parent
y3 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$HOM_Parent))
if (length(y3) > 0) {
haplo.frame$Hom.Parent.Allele[y3] <- sapply(y3, function(y) ((runif(1) > cohort.freqs$p[h]) + 0L))
}
# Now sample IDs with missing HET_Parent
y4 <- which(haplo.frame$cohort == x$cohort[h] & is.na(haplo.frame$HET_Parent) & haplo.frame$sex == 2)
if (length(y4) > 0) {
haplo.frame$Het.Parent.Allele[y4] <- sapply(y4, function(y) ((runif(1) > cohort.freqs$p[h]) + 0L))
}
rm(y1, y2, y3, y4)
}
haplo.frame$HOM_Parent <- NULL
haplo.frame$HET_Parent <- NULL
haplo.frame$Simulation <- simulation
sim.list[[simulation]] <- haplo.frame
rm(cohort.freqs, haplo.frame, h)
}
sim.results <- bind_rows(sim.list)
sim.results$Simulated.Geno <- sim.results$Hom.Parent.Allele + sim.results$Hom.Parent.Allele
names(sim.results)[names(sim.results) == "genotype"] <- "True.Geno"
if (!is.null(return_full_results)) return_full_results <- sim.results
genedrop_obj <- process_genedrop(sim.results)
# Calculate selection
genedrop_obj$simulated_frequencies$Simulation <- as.numeric(as.character(genedrop_obj$simulated_frequencies$Simulation))
genedrop_obj$simulated_frequencies$Cohort <- as.numeric(as.character(genedrop_obj$simulated_frequencies$Cohort))
genedrop_obj$observed_frequencies$Simulation <- as.numeric(as.character(genedrop_obj$observed_frequencies$Simulation))
genedrop_obj$observed_frequencies$Cohort <- as.numeric(as.character(genedrop_obj$observed_frequencies$Cohort))
sim_freq_hold <- genedrop_obj$simulated_frequencies
obs_freq_hold <- genedrop_obj$observed_frequencies
if (remove_founders) {
if (length(n_founder_cohorts) == 1) {
genedrop_obj$simulated_frequencies <-
filter(
genedrop_obj$simulated_frequencies,
!Cohort %in% unique(sort(genedrop_obj$simulated_frequencies$Cohort))[1:n_founder_cohorts]
)
genedrop_obj$observed_frequencies <-
filter(
genedrop_obj$observed_frequencies,
!Cohort %in% unique(sort(genedrop_obj$observed_frequencies$Cohort))[1:n_founder_cohorts]
)
}
}
if ("Allele" %in% names(genedrop_obj$simulated_frequencies)) {
Allele <- unique(genedrop_obj$simulated_frequencies$Allele)
} else {
sim_freq_hold$Allele <- "p"
obs_freq_hold$Allele <- "p"
genedrop_obj$simulated_frequencies$Allele <- "p"
genedrop_obj$observed_frequencies$Allele <- "p"
}
suppressMessages({
sim.slopes <- genedrop_obj$simulated_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = lm(p ~ Cohort)$coefficients[[2]])
true.slopes <- genedrop_obj$observed_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = lm(p ~ Cohort)$coefficients[[2]])
cumu.func <- function(x) {
x <- diff(x)
x <- ifelse(x < 0, x * -1, x)
sum(x, na.rm = F)
}
sim.changes <- genedrop_obj$simulated_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = cumu.func(p))
true.changes <- genedrop_obj$observed_frequencies %>%
group_by(Simulation, Allele) %>%
summarise(Estimate = cumu.func(p))
})
true.slopes$Estimates.Lower <- NA
true.slopes$Estimates.Higher <- NA
for (i in 1:nrow(true.slopes)) {
true.slopes$Estimates.Lower[i] <- length(which(sim.slopes$Allele == true.slopes$Allele[i] &
sim.slopes$Estimate < true.slopes$Estimate[i]))
true.slopes$Estimates.Higher[i] <- length(which(sim.slopes$Allele == true.slopes$Allele[i] &
sim.slopes$Estimate > true.slopes$Estimate[i]))
}
true.changes$Estimates.Lower <- NA
true.changes$Estimates.Higher <- NA
for (i in 1:nrow(true.changes)) {
true.changes$Estimates.Lower[i] <- length(which(sim.changes$Allele == true.changes$Allele[i] &
sim.changes$Estimate < true.changes$Estimate[i]))
true.changes$Estimates.Higher[i] <- length(which(sim.changes$Allele == true.changes$Allele[i] &
sim.changes$Estimate > true.changes$Estimate[i]))
}
# Table the results
true.changes$Analysis <- "Cumulative Change"
true.slopes$Analysis <- "Directional Change"
restab <- rbind(true.changes, true.slopes)
restab$Simulation <- nsim
names(restab)[1] <- "Simulations"
restab <- restab[, c("Analysis", "Allele", "Estimate", "Estimates.Lower", "Estimates.Higher", "Simulations")]
# Return results
sim.results <- list(
results = restab,
observed_frequencies = obs_freq_hold,
simulated_frequencies = sim_freq_hold,
full_results = return_full_results,
n_founder_cohorts = n_founder_cohorts,
remove_founders = remove_founders,
fix_founders = fix_founders,
resample_offspring = resample_offspring,
slopes = list(
true.slopes = true.slopes,
sim.slopes = sim.slopes
),
cumulative_change = list(
true.changes = true.changes,
sim.changes = sim.changes
)
)
class(sim.results) <- "genedroppeR"
sim.results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.