##################################################################################
####################### AE pre-trained RWNN neural network #######################
##################################################################################
#' @title Auto-encoder pre-trained random weight neural networks
#'
#' @description Set-up and estimate weights of a random weight neural network using an auto-encoder for unsupervised pre-training of the hidden weights.
#'
#' @param formula A \link{formula} specifying features and targets used to estimate the parameters of the output-layer.
#' @param data A data-set (either a \link{data.frame} or a \link[tibble]{tibble}) used to estimate the parameters of the output-layer.
#' @param n_hidden A vector of integers designating the number of neurons in each of the hidden-layers (the length of the list is taken as the number of hidden-layers).
#' @param lambda A vector of two penalisation constants used when encoding the hidden-weights and training the output-weights, respectively.
#' @param method The penalisation type used for the auto-encoder (either \code{"l1"} or \code{"l2"}).
#' @param type A string indicating whether this is a regression or classification problem.
#' @param control A list of additional arguments passed to the \link{control_rwnn} function.
#'
#' @return An \link{RWNN-object}.
#'
#' @references Zhang Y., Wu J., Cai Z., Du B., Yu P.S. (2019) "An unsupervised parameter learning model for RVFL neural network." \emph{Neural Networks}, 112, 85-97.
#'
#' @export
ae_rwnn <- function(formula, data = NULL, n_hidden = c(), lambda = NULL, method = "l1", type = NULL, control = list()) {
UseMethod("ae_rwnn")
}
ae_rwnn_matrix <- function(X, y, n_hidden = c(), lambda = NULL, method = "l1", type = NULL, control = list()) {
## Creating control object
control$n_hidden <- n_hidden
control <- do.call(control_rwnn, control)
#
lnorm <- control$lnorm
bias_hidden <- control$bias_hidden
activation <- control$activation
n_features <- control$n_features
rng_function <- control$rng
rng_pars <- control$rng_pars
## Checks
dc <- data_checks(y, X)
# Regularisation
if (is.null(lambda)) {
lambda <- 0
warning("Note: 'lambda' is set to '0', as it was not supplied.")
} else if (any(lambda < 0)) {
lambda <- 0
warning("'lambda' has to be a real number larger than or equal to '0'.")
}
if (length(lambda) == 1) {
lambda <- c(1, lambda)
} else if (length(lambda) > 2) {
lambda <- lambda[seq_len(2)]
warning("The length of 'lambda' was larger than 2; only the first two elements will be used.")
}
if (is.null(n_features)) {
n_features <- ncol(X)
}
if (length(n_features) > 1) {
n_features <- n_features[1]
warning("The length of 'n_features' was larger than 1; only the first element will be used.")
}
if ((n_features < 1) || (n_features > dim(X)[2])) {
stop("'n_features' have to be between '1' and the total number of features.")
}
## Creating random weights
X_dim <- dim(X)
W_hidden <- vector("list", length = length(n_hidden))
for (w in seq_along(W_hidden)) {
## Generating random weights
if (w == 1) {
nr_rows <- (X_dim[2] + as.numeric(bias_hidden[w]))
} else {
nr_rows <- (n_hidden[w - 1] + as.numeric(bias_hidden[w]))
}
if (is.character(rng_function)) {
if (rng_function %in% c("o", "orto", "orthogonal")) {
random_weights <- (rng_pars$max - rng_pars$min) * random_orthonormal(w, nr_rows, X, W_hidden, n_hidden, activation, bias_hidden) + rng_pars$min
}
else if (rng_function %in% c("h", "halt", "halton")) {
random_weights <- (rng_pars$max - rng_pars$min) * halton(nr_rows, n_hidden[w], init = w == 1) + rng_pars$min
}
else if (rng_function %in% c("s", "sobo", "sobol")) {
random_weights <- (rng_pars$max - rng_pars$min) * sobol(nr_rows, n_hidden[w], init = w == 1) + rng_pars$min
}
else if (rng_function %in% c("tor", "torus")) {
random_weights <- (rng_pars$max - rng_pars$min) * torus(nr_rows, n_hidden[w], init = w == 1, start = 0) + rng_pars$min
}
else {
rng_pars$n <- n_hidden[w] * nr_rows
random_weights <- matrix(do.call(rng_function, rng_pars), ncol = n_hidden[w])
}
} else {
rng_pars$n <- n_hidden[w] * nr_rows
random_weights <- matrix(do.call(rng_function, rng_pars), ncol = n_hidden[w])
}
W_hidden[[w]] <- random_weights
if ((w == 1) && (n_features < dim(X)[2])) {
indices_f <- sample(ncol(X), n_features, replace = FALSE) + as.numeric(bias_hidden[w])
W_hidden[[w]][-indices_f, ] <- 0
}
## Auto-encoder pre-training
# Value of hidden-layer before pre-training
H_tilde <- rwnn_forward(X = X, W = W_hidden[seq_len(w)], activation = activation, bias = bias_hidden[seq_len(w)])
H_tilde <- lapply(seq_along(H_tilde), function(i) matrix(H_tilde[[i]], ncol = n_hidden[i]))
if (w == 1) {
P_tilde <- unname(X)
} else {
P_tilde <- H_tilde[[w - 1]]
}
if (bias_hidden[w]) {
P_tilde <- cbind(1, P_tilde)
}
H_tilde <- H_tilde[[w]]
# Pre-training of weights in hidden-layer
if (method == "l1") {
W_tilde <- estimate_output_weights(H_tilde, P_tilde, "l1", lambda[1])
W_hidden[[w]] <- t(W_tilde$beta)
} else if (method == "l2") {
W_tilde <- estimate_output_weights(H_tilde, P_tilde, "l2", lambda[1])
W_hidden[[w]] <- t(W_tilde$beta)
} else {
stop("Method not implemented; set method to either \"l1\" or \"l2\".")
}
}
## Values of last hidden layer
if (control$include_estimate) {
H <- rwnn_forward(X, W_hidden, activation, bias_hidden)
H <- lapply(seq_along(H), function(i) matrix(H[[i]], ncol = n_hidden[i]))
if (control$combine_hidden){
H <- do.call("cbind", H)
}
else {
H <- H[[length(H)]]
}
O <- H
if (control$combine_input) {
O <- cbind(X, H)
}
if (control$bias_output) {
O <- cbind(1, O)
}
W_output <- estimate_output_weights(O, y, lnorm, lambda[2])
} else {
W_output <- list()
}
## Return object
object <- list(
formula = NULL,
data = if(control$include_data) list(X = X, y = y, C = ifelse(type == "regression", NA, colnames(y))) else NULL,
n_hidden = n_hidden,
activation = activation,
lnorm = lnorm,
lambda = lambda[2],
bias = list(W = bias_hidden, beta = control$bias_output),
weights = list(W = W_hidden, beta = W_output$beta),
sigma = W_output$sigma,
type = type,
combined = list(X = control$combine_input, W = control$combine_hidden)
)
class(object) <- "RWNN"
return(object)
}
#' @rdname ae_rwnn
#' @method ae_rwnn formula
#'
#' @example inst/examples/aerwnn_example.R
#'
#' @export
ae_rwnn.formula <- function(formula, data = NULL, n_hidden = c(), lambda = NULL, method = "l1", type = NULL, control = list()) {
# Checks for 'n_hidden'
if (length(n_hidden) < 1) {
stop("When the number of hidden-layers is 0, or left 'NULL', the RWNN reduces to a linear model, see ?lm.")
}
if (!is.numeric(n_hidden)) {
stop("Not all elements of the 'n_hidden' vector were numeric.")
}
# Checks for 'data'
keep_formula <- TRUE
if (is.null(data)) {
data <- tryCatch(
expr = {
as.data.frame(as.matrix(model.frame(formula)))
},
error = function(e) {
stop("'data' needs to be supplied when using 'formula'.")
}
)
x_name <- paste0(attr(terms(formula), "term.labels"), ".")
colnames(data) <- paste0("V", gsub(x_name, "", colnames(data)))
colnames(data)[1] <- "y"
formula <- paste(colnames(data)[1], "~", paste(colnames(data)[seq_along(colnames(data))[-1]], collapse = " + "))
formula <- as.formula(formula)
keep_formula <- FALSE
}
# Checks for 'method'
method <- tolower(method)
if (!(method %in% c("l1", "l2"))) {
stop("'method' has to be set to 'l1' or 'l2'.")
}
# Re-capture feature names when '.' is used in formula interface
formula <- terms(formula, data = data)
formula <- strip_terms(formula)
#
X <- model.matrix(formula, data)
keep <- which(colnames(X) != "(Intercept)")
if (any(colnames(X) == "(Intercept)")) {
X <- X[, keep, drop = FALSE]
}
#
y <- model.response(model.frame(formula, data))
y <- as.matrix(y, nrow = nrow(data))
#
if (is.null(type)) {
if (is(y[, 1], "numeric")) {
type <- "regression"
if (all(abs(y - round(y)) < 1e-8)) {
warning("The response consists of only integers, is this a classification problem?")
}
}
else if (class(y[, 1]) %in% c("factor", "character", "logical")) {
type <- "classification"
}
}
# Change output based on 'type'
if (tolower(type) %in% c("c", "class", "classification")) {
type <- "classification"
y_names <- sort(unique(y))
y <- factor(y, levels = y_names)
y <- model.matrix(~ 0 + y)
attr(y, "assign") <- NULL
attr(y, "contrasts") <- NULL
y <- 2 * y - 1
colnames(y) <- paste(y_names, sep = "")
}
else if (tolower(type) %in% c("r", "reg", "regression")) {
type <- "regression"
}
else {
stop("'type' has not been correctly specified, it needs to be set to either 'regression' or 'classification'.")
}
#
mm <- ae_rwnn_matrix(X, y, n_hidden = n_hidden, lambda = lambda, method = method, type = type, control = control)
mm$formula <- if (keep_formula) formula
return(mm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.