Description Usage Arguments Details Value Examples
Methods for normalizing cell-type profiles.
1 2 3 4 5 6 7 | quantile_norm(merged_profiles, conditions=NULL)
scnorm(merged_profiles, conditions=rep(1, ncol(merged_profiles$mus)))
scaled_regression(merged_profiles, conditions=NULL)
sctrans(merged_profiles, conditions=NULL)
log_transform(merged_profiles, conditions=NULL)
total_norm(merged_profiles, min_rs = 10^-10, conditions=NULL)
gene_length_norm(merged_profiles, gene_lengths, conditions=NULL)
|
merged_profiles |
Output from: merge_profiles function. |
conditions |
vector of different condition (only used in scnorm). |
gene_lengths |
a data.frame with two columns: symbol, length. The former is the gene IDs that matches your cell-type profiles. |
min_rs |
scalar value, minimum allowable value for the dispersion parameter "r" |
Normalizes the various parameters of the cell-type profiles using different methods:
scaled_regression: uses the nlme
package, to perform weighted linear regression to eliminate the effect of total expression from each gene independently. Then scales each gene to have a mean of 0 and sd of 1.
quantile_norm: quantile normalizes all parameters using preprocessCore::normalize.quantiles
scnorm: normalizes all parameters using SCnorm
.
sctrans: normalizes means using sctransform
.
log_transform: log (base e) transforms both means and dispersion parameters.
total_norm: normalizes both means and dispersion parameters using the median total expression.
gene_length_norm: rescales each gene by the provided gene lengths.
merged_profiles object with corrected matrices.
1 2 3 4 5 6 7 8 9 10 11 12 | obj <- list(
mus = matrix(rnorm(200), ncol=10),
rs = matrix(rgamma(200, shape=0.75, scale=1), ncol=10),
ds = matrix(runif(200), ncol=10),
Ns = matrix(rpois(200, lambda=30), ncol=10))
colnames(obj$mus) <- paste("celltype", 1:ncol(obj$mus), sep="")
rownames(obj$mus) <- paste("gene", 1:nrow(obj$mus), sep="")
n_obj1 <- quantile_norm(obj)
n_obj2 <- scaled_regression(obj)
n_obj3 <- total_norm(obj)
n_obj4 <- log_transform(obj)
n_obj5 <- gene_length_norm(obj, gene_lengths=list(symbol=rownames(obj$mus), length=1:20))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.