View source: R/annotate_masses.R
annotate_masses | R Documentation |
This function annotates a feature table based on exact mass
match. It requires a structural library, its metadata, and lists of adducts,
clusters, and neutral losses to be considered. The polarity has to be pos
or neg
and retention time and mass tolerances should be given. The feature
table is expected to be pre-formatted.
annotate_masses(
features = get_params(step = "annotate_masses")$files$features$prepared,
output_annotations = get_params(step =
"annotate_masses")$files$annotations$prepared$structural$ms1,
output_edges = get_params(step = "annotate_masses")$files$networks$spectral$edges$raw,
name_source = get_params(step = "annotate_masses")$names$source,
name_target = get_params(step = "annotate_masses")$names$target,
library = get_params(step = "annotate_masses")$files$libraries$sop$merged$keys,
str_stereo = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$stereo,
str_met = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$metadata,
str_nam = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$names,
str_tax_cla = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$taxonomies$cla,
str_tax_npc = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$taxonomies$npc,
adducts_list = get_params(step = "annotate_masses")$ms$adducts,
clusters_list = get_params(step = "annotate_masses")$ms$clusters,
neutral_losses_list = get_params(step = "annotate_masses")$ms$neutral_losses,
ms_mode = get_params(step = "annotate_masses")$ms$polarity,
tolerance_ppm = get_params(step = "annotate_masses")$ms$tolerances$mass$ppm$ms1,
tolerance_rt = get_params(step = "annotate_masses")$ms$tolerances$rt$adducts
)
features |
Table containing your previous annotation to complement |
output_annotations |
Output for mass based structural annotations |
output_edges |
Output for mass based edges |
name_source |
Name of the source features column |
name_target |
Name of the target features column |
library |
Library containing the keys |
str_stereo |
File containing structures stereo |
str_met |
File containing structures metadata |
str_nam |
File containing structures names |
str_tax_cla |
File containing Classyfire taxonomy |
str_tax_npc |
File containing NPClassifier taxonomy |
adducts_list |
List of adducts to be used |
clusters_list |
List of clusters to be used |
neutral_losses_list |
List of neutral losses to be used |
ms_mode |
Ionization mode. Must be 'pos' or 'neg' |
tolerance_ppm |
Tolerance to perform annotation. Should be <= 20 ppm |
tolerance_rt |
Tolerance to group adducts. Should be <= 0.05 minutes |
The path to the files containing MS1 annotations and edges
## Not run:
tima:::copy_backbone()
go_to_cache()
github <- "https://raw.githubusercontent.com/"
repo <- "taxonomicallyinformedannotation/tima-example-files/main/"
data_interim <- "data/interim/"
dir <- paste0(github, repo)
dir <- paste0(dir, data_interim)
annotate_masses(
features = paste0(dir, "features/example_features.tsv"),
library = paste0(dir, "libraries/sop/merged/keys.tsv"),
str_stereo = paste0(dir, "libraries/sop/merged/structures/stereo.tsv"),
str_met = paste0(dir, "libraries/sop/merged/structures/metadata.tsv"),
str_nam = paste0(dir, "libraries/sop/merged/structures/names.tsv"),
str_tax_cla = paste0(dir, "libraries/sop/merged/structures/taxonomies/classyfire.tsv"),
str_tax_npc = paste0(dir, "libraries/sop/merged/structures/taxonomies/npc.tsv")
)
unlink("data", recursive = TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.