#' @title Load a Directory with all Results
#' @description Load all the log files in an results directory recursively
#' @param results.dir the results directory
#' @param keep.columns the columns to keep, any vector containing elements
#' \code{"t"} (for time), \code{"f"} (for the objective value), and
#' \code{"fes"} (for the consumed FEs)
#' @param make.time.unique should we make the time indices unique (except maybe
#' for the first and last point)? This makes sense when we want to plot
#' diagrams over a time axis, as we then have removed redundant points right
#' away. If \code{make.time.unique==FALSE}, then there may be multiple
#' improvements at the same time index due to the resolution of the computer
#' clock (while each improvement will definitely have a unique FE).
#' @param f.must.be.improving \code{true} if the logged objective values must be
#' strictly improving? This is the default way logs are generated by aitoa.
#' However, you can also create a log where every single sampled solution is
#' logged, so then you must set \code{f.must.be.improving=FALSE} to load the
#' data.
#' @return a list of list of list of data frames, each loaded via
#' \link{aitoa.load.algo.dir}, where the names are the instance IDs
#' @export aitoa.load.results.dir
#' @include load_algorithm_dir.R
#' @include utils.R
#' @seealso \link{aitoa.load.algo.dir}
aitoa.load.results.dir <- function(results.dir,
keep.columns = c("fes", "t", "f"),
make.time.unique=FALSE,
f.must.be.improving=TRUE) {
old.options <- options(warn=2);
stopifnot(!is.null(results.dir),
is.character(results.dir),
length(results.dir) == 1L,
!is.na(results.dir),
!is.null(keep.columns),
is.character(keep.columns),
length(keep.columns) > 0L,
!any(is.na(keep.columns)),
!is.null(make.time.unique),
is.logical(make.time.unique),
length(make.time.unique) == 1L,
isTRUE(make.time.unique) || isFALSE(make.time.unique),
!is.null(f.must.be.improving),
is.logical(f.must.be.improving),
length(f.must.be.improving) == 1L,
isTRUE(f.must.be.improving) || isFALSE(f.must.be.improving));
keep.columns <- unique(keep.columns);
stopifnot(length(keep.columns) > 0L,
all(keep.columns %in% c("fes", "t", "f")));
results.dir <- .dir.exists(results.dir);
results.dir <- force(results.dir);
stopifnot(dir.exists(results.dir));
algoDirs <- list.dirs(path=results.dir,
full.names = TRUE,
recursive = FALSE);
algoDirs <- sort(algoDirs);
stopifnot(length(algoDirs) > 0L,
length(unique(algoDirs)) == length(algoDirs));
data <- lapply(algoDirs, aitoa.load.algo.dir,
keep.columns=keep.columns,
make.time.unique=make.time.unique,
f.must.be.improving=f.must.be.improving);
stopifnot(length(data) == length(algoDirs));
## verify results
for(a in data) {
stopifnot(is.list(a),
length(a) > 0L);
for(id in a) {
stopifnot(is.list(id),
length(id) > 0L);
for(r in id) {
stopifnot(is.data.frame(r),
colnames(r) == keep.columns,
nrow(r) > 0L);
}
}
}
algorithms <- vapply(data, function(n) attr(n[[1L]][[1L]], "algorithm"), NA_character_);
stopifnot(length(algorithms) == length(data),
length(unique(algorithms)) == length(data),
all(nchar(algorithms) > 0L));
names(data) <- algorithms;
options(old.options);
return(data);
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.