library(testthat)
library(recipes)
n <- 100
set.seed(424)
dat <- matrix(rnorm(n * 5), ncol = 5)
dat <- as.data.frame(dat)
dat$duplicate <- dat$V1
dat$V6 <- -dat$V2 + runif(n) * .2
test_that("high filter", {
set.seed(1)
rec <- recipe(~., data = dat)
filtering <- rec %>%
step_corr(all_predictors(), threshold = .5)
filtering_trained <- prep(filtering, training = dat, verbose = FALSE)
removed <- c("V6", "V1")
expect_equal(filtering_trained$steps[[1]]$removals, removed)
})
test_that("low filter", {
rec <- recipe(~., data = dat)
filtering <- rec %>%
step_corr(all_predictors(), threshold = 1)
filtering_trained <- prep(filtering, training = dat, verbose = FALSE)
expect_equal(filtering_trained$steps[[1]]$removals, numeric(0))
})
test_that("many missing values", {
dat2 <- dat
dat2$V4 <- NA_real_
rec <- recipe(~., data = dat2)
filtering <- rec %>%
step_corr(all_predictors(), threshold = .25)
expect_snapshot(
filtering_trained <- prep(filtering, training = dat2, verbose = FALSE)
)
expect_equal(filtering_trained$steps[[1]]$removals, paste0("V", 1:2))
})
test_that("occasional missing values", {
dat3 <- dat
dat3$V1[1] <- NA_real_
dat3$V4[10] <- NA_real_
rec <- recipe(~., data = dat3)
filtering <- rec %>%
step_corr(all_predictors(), threshold = .25, use = "everything")
expect_snapshot(
filtering_trained <- prep(filtering, training = dat3, verbose = FALSE)
)
expect_equal(filtering_trained$steps[[1]]$removals, "V2")
})
test_that("tunable", {
rec <-
recipe(~., data = iris) %>%
step_corr(all_predictors())
rec_param <- tunable.step_corr(rec$steps[[1]])
expect_equal(rec_param$name, c("threshold"))
expect_true(all(rec_param$source == "recipe"))
expect_true(is.list(rec_param$call_info))
expect_equal(nrow(rec_param), 1)
expect_equal(
names(rec_param),
c("name", "call_info", "source", "component", "component_id")
)
})
test_that("case weights", {
dat_caseweights <- dat %>%
mutate(V3_dup = V3 + rep(c(0, 1), c(50, 50)),
wts = rep(c(1, 2), c(50, 50)),
wts = frequency_weights(wts))
# low filter
filtering <- recipe(~., data = dat_caseweights) %>%
step_corr(all_predictors(), threshold = 0.92)
filtering_trained <- prep(filtering)
removed <- c("V1", "V2")
expect_equal(filtering_trained$steps[[1]]$removals, removed)
# high filter
filtering <- recipe(~., data = dat_caseweights) %>%
step_corr(all_predictors(), threshold = 0.9)
filtering_trained <- prep(filtering)
removed <- c("V3_dup", "V1", "V2")
expect_equal(filtering_trained$steps[[1]]$removals, removed)
expect_snapshot(filtering_trained)
# ----------------------------------------------------------------------------
dat_caseweights <- dat %>%
mutate(V3_dup = V3 + rep(c(0, 1), c(50, 50)),
wts = rep(c(1, 2), c(50, 50)),
wts = importance_weights(wts))
# low filter
filtering <- recipe(~., data = dat_caseweights) %>%
step_corr(all_predictors(), threshold = 0.92)
filtering_trained <- prep(filtering)
removed <- c("V6", "V1")
expect_equal(filtering_trained$steps[[1]]$removals, removed)
# high filter
filtering <- recipe(~., data = dat_caseweights) %>%
step_corr(all_predictors(), threshold = 0.9)
filtering_trained <- prep(filtering)
removed <- c("V6", "V1", "V3")
expect_equal(filtering_trained$steps[[1]]$removals, removed)
expect_snapshot(filtering_trained)
})
test_that("corr_filter() warns on many NA values", {
mtcars[, 1:10] <- NA_real_
expect_snapshot(
tmp <- recipe(~., data = mtcars) %>%
step_corr(all_predictors()) %>%
prep()
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
# Here for completeness
# step_corr() removes variables and thus does not care if they are not there.
expect_true(TRUE)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_corr(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_corr(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_corr(rec)
expect <- tibble(terms = character(), id = character())
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("printing", {
set.seed(1)
rec <- recipe(~., data = dat) %>%
step_corr(all_predictors())
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("tunable is setup to work with extract_parameter_set_dials", {
skip_if_not_installed("dials")
rec <- recipe(~., data = mtcars) %>%
step_corr(all_predictors(),
threshold = hardhat::tune())
params <- extract_parameter_set_dials(rec)
expect_s3_class(params, "parameters")
expect_identical(nrow(params), 1L)
})
test_that("bad args", {
expect_snapshot(
recipe(mpg ~ ., mtcars) %>%
step_corr(all_predictors(), threshold = 2) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(mpg ~ ., mtcars) %>%
step_corr(all_predictors(), use = "this") %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(mpg ~ ., mtcars) %>%
step_corr(all_predictors(), method = "my dissertation") %>%
prep(),
error = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.