#' Estimate a AR model
#'
#' Searches through the vector of lag orders to find the best AR model which
#' has lowest AIC, AICc or BIC value. It is implemented using OLS, and behaves
#' comparably to [`stats::ar.ols()`].
#'
#' Exogenous regressors and [`common_xregs`] can be specified in the model
#' formula.
#'
#' @aliases report.AR
#'
#' @param formula Model specification (see "Specials" section).
#' @param ic The information criterion used in selecting the model.
#' @param ... Further arguments for arima
#'
#' @section Specials:
#'
#' \subsection{pdq}{
#' The `order` special is used to specify the lag order for the auto-regression.
#' \preformatted{
#' order(p = 0:15, fixed = list())
#' }
#'
#' \tabular{ll}{
#' `p` \tab The order of the auto-regressive (AR) terms. If multiple values are provided, the one which minimises `ic` will be chosen.\cr
#' `fixed` \tab A named list of fixed parameters for coefficients. The names identify the coefficient, beginning with `ar`, and then followed by the lag order. For example, `fixed = list(ar1 = 0.3, ar3 = 0)`.
#' }
#' }
#'
#' \subsection{xreg}{
#' Exogenous regressors can be included in an AR model without explicitly using the `xreg()` special. Common exogenous regressor specials as specified in [`common_xregs`] can also be used. These regressors are handled using [stats::model.frame()], and so interactions and other functionality behaves similarly to [stats::lm()].
#'
#' The inclusion of a constant in the model follows the similar rules to [`stats::lm()`], where including `1` will add a constant and `0` or `-1` will remove the constant. If left out, the inclusion of a constant will be determined by minimising `ic`.
#'
#' \preformatted{
#' xreg(..., fixed = list())
#' }
#'
#' \tabular{ll}{
#' `...` \tab Bare expressions for the exogenous regressors (such as `log(x)`)\cr
#' `fixed` \tab A named list of fixed parameters for coefficients. The names identify the coefficient, and should match the name of the regressor. For example, `fixed = list(constant = 20)`.
#' }
#' }
#'
#' @return A model specification.
#'
#' @seealso
#' [Forecasting: Principles and Practices, Vector autoregressions (section 11.2)](https://otexts.com/fpp3/AR.html)
#'
#' @examples
#' luteinizing_hormones <- as_tsibble(lh)
#' fit <- luteinizing_hormones %>%
#' model(AR(value ~ order(3)))
#'
#' report(fit)
#'
#' fit %>%
#' forecast() %>%
#' autoplot(luteinizing_hormones)
#' @export
AR <- function(formula, ic = c("aicc", "aic", "bic"), ...) {
ic <- match.arg(ic)
ar_model <- new_model_class("AR",
train = train_ar,
specials = specials_ar,
origin = NULL,
check = all_tsbl_checks
)
new_model_definition(ar_model, !!enquo(formula), ic = ic, ...)
}
specials_ar <- new_specials(
order = function(p = 0:15, fixed = list()) {
if (any(p < 0)) {
warn("The AR order must be non-negative. Only non-negative orders will be considered.")
p <- p[p >= 0]
}
list(p = p, fixed = fixed)
},
common_xregs,
xreg = function(..., fixed = list()) {
dots <- enexprs(...)
env <- map(enquos(...), get_env)
env[map_lgl(env, compose(is_empty, env_parents))] <- NULL
env <- if (!is_empty(env)) get_env(env[[1]]) else base_env()
constants <- map_lgl(dots, inherits, "numeric")
constant_given <- any(map_lgl(dots[constants], `%in%`, -1:1))
model_formula <- new_formula(
lhs = NULL,
rhs = reduce(dots, function(.x, .y) call2("+", .x, .y))
)
xreg <- model.frame(model_formula, data = env, na.action = stats::na.pass)
list(
constant = if (constant_given) as.logical(terms(xreg) %@% "intercept") else c(TRUE, FALSE),
xreg = if (NCOL(xreg) == 0) NULL else as.matrix(xreg),
fixed = fixed
)
},
.required_specials = c("order", "xreg"),
.xreg_specials = names(common_xregs)
)
#' @importFrom stats ts
train_ar <- function(.data, specials, ic, ...) {
# Get args
p <- specials$order[[1]]$p
# Get response variables
y <- unclass(.data)[[measured_vars(.data)]]
# Get xreg
constant <- specials$xreg[[1]]$constant %||% c(TRUE, FALSE)
xreg <- specials$xreg[[1]]$xreg
fixed <- c(specials$order[[1]]$fixed, specials$xreg[[1]]$fixed)
# Choose best model
reduce(transpose(expand.grid(p = p, constant = constant)),
function(best, args) {
new <- estimate_ar(y, args$p, xreg, args$constant, fixed)
if ((new[[ic]] %||% Inf) < (best[[ic]] %||% Inf)) {
best <- new
}
best
},
.init = NULL
)
}
# Adapted and generalised from stats::ar.ols
estimate_ar <- function(x, p, xreg, constant, fixed) {
if (is.null(xreg)) {
xreg <- matrix(nrow = length(x), ncol = 0)
}
if (constant) {
xreg <- cbind(constant = rep.int(1, length(x)), xreg)
}
# scale
x_sd <- sd(x)
x <- x/x_sd
par <- c(colnames(xreg), sprintf("ar%i", seq_len(p)))
coef <- set_names(map_dbl(fixed[par], `%||%`, NA_real_), par)
y <- stats::embed(x, p + 1L)
X <- cbind(xreg[(p+1):nrow(xreg),,drop=FALSE], y[,-1,drop=FALSE])
Y <- y[,1]
Y_est <- t(Y - X[,!is.na(coef),drop=FALSE]%*%coef[!is.na(coef)])
X_est <- X[,is.na(coef),drop=FALSE]
nobs <- length(x)
npar <- ncol(X_est)
nr <- nrow(X_est)
XX <- t(X_est) %*% X_est
rank <- qr(XX)$rank
if (rank != nrow(XX)) {
warning(paste("model order: ", p, "singularities in the computation of the projection matrix",
"results are only valid up to model order",
p - 1L), domain = NA)
return(NULL)
}
P <- if (ncol(XX) > 0)
solve(XX)
else XX
coef[coef_est <- is.na(coef)] <- Y_est %*% X_est %*% P
YH <- drop(coef %*% t(X))
E <- Y - YH
varE <- tcrossprod(t(E))/nr
varA <- kronecker(P, varE)
coef_se <- numeric(length(par))
coef_se[coef_est] <- if (ncol(varA) > 0) sqrt(diag(varA)) else numeric()
aic <- nobs * log(det(varE)) + 2 * npar
bic <- aic + npar * (log(nobs) - 2)
aicc <- aic + 2 * npar * (npar + 1) / (nobs - npar - 1)
# rescale
coef[seq_len(ncol(xreg))] <- coef[seq_len(ncol(xreg))]*x_sd
coef_se[seq_len(ncol(xreg))] <- coef_se[seq_len(ncol(xreg))]*x_sd
varE <- varE * x_sd^2
YH <- YH * x_sd
E <- E * x_sd
x <- x * x_sd
nx <- length(coef) - p
if (!is.null(xreg)) {
xcoef <- coef[seq_len(nx)]
xm <- drop(X[,seq_len(nx),drop=FALSE] %*% xcoef)
} else {
xm <- rep(0, nrow(new_data))
}
xm <- c(rep.int(NA_real_, p), xm)
# Output model
structure(
list(
coef = coef,
coef.se = coef_se,
fits = c(rep.int(NA_real_, p), YH),
resid = c(rep.int(NA_real_, p), E),
reg_resid = x - xm,
last = x[(length(E)+1):length(x)],
sigma2 = drop(varE),
aic = aic,
bic = bic,
aicc = aicc,
p = p,
constant = constant
),
class = "AR"
)
}
#' @inherit forecast.ARIMA
#' @examples
#' as_tsibble(lh) %>%
#' model(AR(value ~ order(3))) %>%
#' forecast()
#' @export
forecast.AR <- function(object, new_data = NULL, specials = NULL,
bootstrap = FALSE, times = 5000, ...) {
if (bootstrap) {
sim <- map(seq_len(times), function(x) generate(object, new_data, specials, bootstrap = TRUE)[[".sim"]]) %>%
transpose() %>%
map(as.numeric)
return(distributional::dist_sample(sim))
}
h <- NROW(new_data)
x <- c(object$last, rep(NA_real_, h))
n <- length(object$last)
p <- object$p
coef <- object$coef
# Get xreg
xreg <- specials$xreg[[1]]$xreg
if (object$constant) {
xreg <- cbind(constant = rep(1, h), xreg)
}
# Predict
nx <- length(coef) - p
if (!is.null(xreg)) {
xcoef <- coef[seq_len(nx)]
xm <- drop(xreg %*% xcoef)
} else {
xm <- rep(0, nrow(new_data))
}
ar <- coef[nx + seq_len(p)]
for (i in seq_len(h)) x[p + i] <- sum(ar * x[n + i - seq_len(p)]) + xm[i]
fc <- x[p + seq_len(h)]
psi <- ar_se(ar, h)
se <- sqrt(object$sigma2 * cumsum(c(1, psi^2)))
# Output forecasts
distributional::dist_normal(fc, se)
}
#' @inherit generate.ARIMA
#' @examples
#' as_tsibble(lh) %>%
#' model(AR(value ~ order(3))) %>%
#' generate()
#' @export
generate.AR <- function(x, new_data = NULL, specials = NULL,
bootstrap = FALSE, ...) {
n <- length(x$last)
p <- x$p
coef <- x$coef
# Get xreg
h <- max(map_int(key_data(new_data)[[".rows"]], length))
xreg <- specials$xreg[[1]]$xreg
if(x$constant){
xreg <- cbind(constant = rep(1, h), xreg)
}
# Predict xreg
nx <- length(coef) - p
ar <- coef[nx + seq_len(p)]
if (!is.null(xreg)) {
xcoef <- coef[seq_len(nx)]
xm <- drop(xreg %*% xcoef) / (1 - sum(ar))
} else {
xm <- rep(0, nrow(new_data))
}
# Generate future innovations if missing
if(!(".innov" %in% names(new_data))){
if(bootstrap){
res <- residuals(x)
new_data$.innov <- sample(na.omit(res) - mean(res, na.rm = TRUE),
nrow(new_data), replace = TRUE)
}
else{
new_data$.innov <- stats::rnorm(nrow(new_data), sd = sqrt(x$sigma2))
}
}
new_data <- transmute(group_by_key(new_data),
".sim" := stats::filter(
!!sym(".innov"), ar, method = "recursive",
init = rev(x$reg_resid)[seq_along(ar)]))
mutate(dplyr::ungroup(new_data), ".sim" := as.numeric(!!sym(".sim") + !!xm))
}
#' Refit an AR model
#'
#' Applies a fitted AR model to a new dataset.
#'
#' @inheritParams forecast.AR
#' @param reestimate If `TRUE`, the coefficients for the fitted model will be re-estimated to suit the new data.
#'
#' @examples
#' lung_deaths_male <- as_tsibble(mdeaths)
#' lung_deaths_female <- as_tsibble(fdeaths)
#'
#' fit <- lung_deaths_male %>%
#' model(AR(value ~ 1 + order(10)))
#'
#' report(fit)
#'
#' fit %>%
#' refit(lung_deaths_female) %>%
#' report()
#' @return A refitted model.
#'
#' @importFrom stats formula residuals
#' @export
refit.AR <- function(object, new_data, specials = NULL, reestimate = FALSE, ...) {
y <- unclass(new_data)[[measured_vars(new_data)]]
fixed <- if (reestimate) {
c(specials$order[[1]]$fixed, specials$xreg[[1]]$fixed)
} else {
as.list(object$coef)
}
estimate_ar(y, object$p, specials$xreg[[1]]$xreg, object$constant, fixed)
}
ar_se <- function(phi, h){
p <- length(drop(phi))
npsi <- h + p
psi <- numeric(npsi)
psi[seq_len(p)] <- phi[seq_len(p)]
for(i in seq_len(h))
for(j in seq_len(p)) psi[i + j] = psi[i + j] + phi[j] * psi[i]
psi[seq_len(h-1)]
# vars <- cumsum(c(1, psi^2))
# sqrt(object$var.pred * vars)[seq_len(h)]
}
#' @inherit fitted.ARIMA
#'
#' @examples
#' as_tsibble(lh) %>%
#' model(AR(value ~ order(3))) %>%
#' fitted()
#' @export
fitted.AR <- function(object, ...) {
object$fits
}
#' @inherit residuals.ARIMA
#'
#' @examples
#' as_tsibble(lh) %>%
#' model(AR(value ~ order(3))) %>%
#' residuals()
#' @export
residuals.AR <- function(object, type = c("innovation", "regression"), ...) {
type <- match.arg(type)
if (type == "innovation") {
object$resid
}
else if (type == "regression") {
object$reg_resid
}
}
#' @export
model_sum.AR <- function(x) {
sprintf("AR(%s)%s", x$p, ifelse(x$constant, " w/ mean", ""))
}
#' @inherit tidy.ARIMA
#'
#' @examples
#' as_tsibble(lh) %>%
#' model(AR(value ~ order(3))) %>%
#' tidy()
#' @export
tidy.AR <- function(x, ...) {
out <- tibble::enframe(drop(x$coef), "term", "estimate")
out$std.error <- x$coef.se
out$statistic <- out$estimate / out$std.error
out$p.value <- 2*stats::pt(abs(out$statistic), length(x$resid) - length(x$coef), lower.tail = FALSE)
out
}
#' Glance a AR
#'
#' Construct a single row summary of the AR model.
#'
#' Contains the variance of residuals (`sigma2`), the log-likelihood (`log_lik`),
#' and information criterion (`AIC`, `AICc`, `BIC`).
#'
#' @inheritParams generics::glance
#'
#' @return A one row tibble summarising the model's fit.
#'
#' @examples
#' as_tsibble(lh) %>%
#' model(AR(value ~ order(3))) %>%
#' glance()
#' @export
glance.AR <- function(x, ...) {
tibble(sigma2 = x$sigma2, AIC = x$aic, AICc = x$aicc, BIC = x$bic, dof = length(x$resid) - length(x$coef))
}
#' @export
report.AR <- function(object, ...) {
par <- rbind(tidy(object)$estimate)
colnames(par) <- tidy(object)$term
rownames(par) <- ""
if (NCOL(par) > 0) {
cat("\nCoefficients:\n")
coef <- round(par, digits = 4)
print.default(coef, print.gap = 2)
}
cat(
"\nsigma^2 estimated as ", format(object$sigma2, digits = 4),
# ": log likelihood=", format(round(object$fit$log_lik, 2L)),
"\n",
sep = ""
)
cat(
sprintf(
"AIC = %s\tAICc = %s\tBIC = %s",
format(round(object$aic, 2L)),
format(round(object$aicc, 2L)),
format(round(object$bic, 2L))
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.